Real-time model predictive control of a wastewater treatment plant based on machine learning

Two separate goals should be jointly pursued in wastewater treatment: nutrient removal and energy conservation. An efficient controller performance should cope with process uncertainties, seasonal variations and process nonlinearities. This paper describes the design and testing of a model predictiv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 81(2020), 11 vom: 30. Juni, Seite 2391-2400
1. Verfasser: Bernardelli, A (VerfasserIn)
Weitere Verfasser: Marsili-Libelli, S, Manzini, A, Stancari, S, Tardini, G, Montanari, D, Anceschi, G, Gelli, P, Venier, S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Waste Water
LEADER 01000naa a22002652 4500
001 NLM313590656
003 DE-627
005 20231225150913.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2020.298  |2 doi 
028 5 2 |a pubmed24n1045.xml 
035 |a (DE-627)NLM313590656 
035 |a (NLM)32784282 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bernardelli, A  |e verfasserin  |4 aut 
245 1 0 |a Real-time model predictive control of a wastewater treatment plant based on machine learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.08.2020 
500 |a Date Revised 07.12.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Two separate goals should be jointly pursued in wastewater treatment: nutrient removal and energy conservation. An efficient controller performance should cope with process uncertainties, seasonal variations and process nonlinearities. This paper describes the design and testing of a model predictive controller (MPC) based on neuro-fuzzy techniques that is capable of estimating the main process variables and providing the right amount of aeration to achieve an efficient and economical operation. This algorithm has been field tested on a large-scale municipal wastewater treatment plant of about 500,000 PE, with encouraging results in terms of better effluent quality and energy savings 
650 4 |a Journal Article 
650 7 |a Waste Water  |2 NLM 
700 1 |a Marsili-Libelli, S  |e verfasserin  |4 aut 
700 1 |a Manzini, A  |e verfasserin  |4 aut 
700 1 |a Stancari, S  |e verfasserin  |4 aut 
700 1 |a Tardini, G  |e verfasserin  |4 aut 
700 1 |a Montanari, D  |e verfasserin  |4 aut 
700 1 |a Anceschi, G  |e verfasserin  |4 aut 
700 1 |a Gelli, P  |e verfasserin  |4 aut 
700 1 |a Venier, S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 81(2020), 11 vom: 30. Juni, Seite 2391-2400  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:81  |g year:2020  |g number:11  |g day:30  |g month:06  |g pages:2391-2400 
856 4 0 |u http://dx.doi.org/10.2166/wst.2020.298  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 81  |j 2020  |e 11  |b 30  |c 06  |h 2391-2400