Model-Protected Multi-Task Learning

Multi-task learning (MTL) refers to the paradigm of learning multiple related tasks together. In contrast, in single-task learning (STL) each individual task is learned independently. MTL often leads to better trained models because they can leverage the commonalities among related tasks. However, b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 23. Feb., Seite 1002-1019
1. Verfasser: Liang, Jian (VerfasserIn)
Weitere Verfasser: Liu, Ziqi, Zhou, Jiayu, Jiang, Xiaoqian, Zhang, Changshui, Wang, Fei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM313555257
003 DE-627
005 20231225150828.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3015859  |2 doi 
028 5 2 |a pubmed24n1045.xml 
035 |a (DE-627)NLM313555257 
035 |a (NLM)32780696 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Jian  |e verfasserin  |4 aut 
245 1 0 |a Model-Protected Multi-Task Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 02.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Multi-task learning (MTL) refers to the paradigm of learning multiple related tasks together. In contrast, in single-task learning (STL) each individual task is learned independently. MTL often leads to better trained models because they can leverage the commonalities among related tasks. However, because MTL algorithms can "leak" information from different models across different tasks, MTL poses a potential security risk. Specifically, an adversary may participate in the MTL process through one task and thereby acquire the model information for another task. The previously proposed privacy-preserving MTL methods protect data instances rather than models, and some of them may underperform in comparison with STL methods. In this paper, we propose a privacy-preserving MTL framework to prevent information from each model leaking to other models based on a perturbation of the covariance matrix of the model matrix. We study two popular MTL approaches for instantiation, namely, learning the low-rank and group-sparse patterns of the model matrix. Our algorithms can be guaranteed not to underperform compared with STL methods. We build our methods based upon tools for differential privacy, and privacy guarantees, utility bounds are provided, and heterogeneous privacy budgets are considered. The experiments demonstrate that our algorithms outperform the baseline methods constructed by existing privacy-preserving MTL methods on the proposed model-protection problem 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Liu, Ziqi  |e verfasserin  |4 aut 
700 1 |a Zhou, Jiayu  |e verfasserin  |4 aut 
700 1 |a Jiang, Xiaoqian  |e verfasserin  |4 aut 
700 1 |a Zhang, Changshui  |e verfasserin  |4 aut 
700 1 |a Wang, Fei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 2 vom: 23. Feb., Seite 1002-1019  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:2  |g day:23  |g month:02  |g pages:1002-1019 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3015859  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 2  |b 23  |c 02  |h 1002-1019