MHF-Net : An Interpretable Deep Network for Multispectral and Hyperspectral Image Fusion

Multispectral and hyperspectral image fusion (MS/HS fusion) aims to fuse a high-resolution multispectral (HrMS) and a low-resolution hyperspectral (LrHS) images to generate a high-resolution hyperspectral (HrHS) image, which has become one of the most commonly addressed problems for hyperspectral im...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 3 vom: 23. März, Seite 1457-1473
Auteur principal: Xie, Qi (Auteur)
Autres auteurs: Zhou, Minghao, Zhao, Qian, Xu, Zongben, Meng, Deyu
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM313555230
003 DE-627
005 20250227184236.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3015691  |2 doi 
028 5 2 |a pubmed25n1045.xml 
035 |a (DE-627)NLM313555230 
035 |a (NLM)32780695 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Qi  |e verfasserin  |4 aut 
245 1 0 |a MHF-Net  |b An Interpretable Deep Network for Multispectral and Hyperspectral Image Fusion 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multispectral and hyperspectral image fusion (MS/HS fusion) aims to fuse a high-resolution multispectral (HrMS) and a low-resolution hyperspectral (LrHS) images to generate a high-resolution hyperspectral (HrHS) image, which has become one of the most commonly addressed problems for hyperspectral image processing. In this paper, we specifically designed a network architecture for the MS/HS fusion task, called MHF-net, which not only contains clear interpretability, but also reasonably embeds the well studied linear mapping that links the HrHS image to HrMS and LrHS images. In particular, we first construct an MS/HS fusion model which merges the generalization models of low-resolution images and the low-rankness prior knowledge of HrHS image into a concise formulation, and then we build the proposed network by unfolding the proximal gradient algorithm for solving the proposed model. As a result of the careful design for the model and algorithm, all the fundamental modules in MHF-net have clear physical meanings and are thus easily interpretable. This not only greatly facilitates an easy intuitive observation and analysis on what happens inside the network, but also leads to its good generalization capability. Based on the architecture of MHF-net, we further design two deep learning regimes for two general cases in practice: consistent MHF-net and blind MHF-net. The former is suitable in the case that spectral and spatial responses of training and testing data are consistent, just as considered in most of the pervious general supervised MS/HS fusion researches. The latter ensures a good generalization in mismatch cases of spectral and spatial responses in training and testing data, and even across different sensors, which is generally considered to be a challenging issue for general supervised MS/HS fusion methods. Experimental results on simulated and real data substantiate the superiority of our method both visually and quantitatively as compared with state-of-the-art methods along this line of research 
650 4 |a Journal Article 
700 1 |a Zhou, Minghao  |e verfasserin  |4 aut 
700 1 |a Zhao, Qian  |e verfasserin  |4 aut 
700 1 |a Xu, Zongben  |e verfasserin  |4 aut 
700 1 |a Meng, Deyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 3 vom: 23. März, Seite 1457-1473  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:3  |g day:23  |g month:03  |g pages:1457-1473 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3015691  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 3  |b 23  |c 03  |h 1457-1473