Characterization of Vortex Flow in a Mouse Model of Ventricular Dyssynchrony by Plane-Wave Ultrasound Using Hexplex Processing

The rodent heart is frequently used to study human cardiovascular disease (CVD). Although advanced cardiovascular ultrasound imaging methods are available for human clinical practice, application of these techniques to small animals remains limited due to the temporal and spatial-resolution demands....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 3 vom: 01. März, Seite 538-548
1. Verfasser: Shekhar, Akshay (VerfasserIn)
Weitere Verfasser: Aristizabal, Orlando, Fishman, Glenn I, Phoon, Colin K L, Ketterling, Jeffrey A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural
LEADER 01000caa a22002652c 4500
001 NLM313389217
003 DE-627
005 20250227180623.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2020.3014844  |2 doi 
028 5 2 |a pubmed25n1044.xml 
035 |a (DE-627)NLM313389217 
035 |a (NLM)32763851 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shekhar, Akshay  |e verfasserin  |4 aut 
245 1 0 |a Characterization of Vortex Flow in a Mouse Model of Ventricular Dyssynchrony by Plane-Wave Ultrasound Using Hexplex Processing 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2021 
500 |a Date Revised 02.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The rodent heart is frequently used to study human cardiovascular disease (CVD). Although advanced cardiovascular ultrasound imaging methods are available for human clinical practice, application of these techniques to small animals remains limited due to the temporal and spatial-resolution demands. Here, an ultrasound vector-flow workflow is demonstrated that enables visualization and quantification of the complex hemodynamics within the mouse heart. Wild type (WT) and fibroblast growth factor homologous factor 2 (FHF2)-deficient mice (Fhf2 KO/Y ), which present with hyperthermia-induced ECG abnormalities highly reminiscent of Brugada syndrome, were used as a mouse model of human CVD. An 18-MHz linear array was used to acquire high-speed (30 kHz), plane-wave data of the left ventricle (LV) while increasing core body temperature up to 41.5 °C. Hexplex (i.e., six output) processing of the raw data sets produced the output of vector-flow estimates (magnitude and phase); B-mode and color-Doppler images; Doppler spectrograms; and local time histories of vorticity and pericardium motion. Fhf2 WT/Y mice had repeatable beat-to-beat cardiac function, including vortex formation during diastole, at all temperatures. In contrast, Fhf2 KO/Y mice displayed dyssynchronous contractile motion that disrupted normal inflow vortex formation and impaired LV filling as temperature rose. The hexplex processing approach demonstrates the ability to visualize and quantify the interplay between hemodynamic and mechanical function in a mouse model of human CVD 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Aristizabal, Orlando  |e verfasserin  |4 aut 
700 1 |a Fishman, Glenn I  |e verfasserin  |4 aut 
700 1 |a Phoon, Colin K L  |e verfasserin  |4 aut 
700 1 |a Ketterling, Jeffrey A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 68(2021), 3 vom: 01. März, Seite 538-548  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:68  |g year:2021  |g number:3  |g day:01  |g month:03  |g pages:538-548 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2020.3014844  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2021  |e 3  |b 01  |c 03  |h 538-548