A Highly Efficient and Stable Blue-Emitting Cs5 Cu3 Cl6 I2 with a 1D Chain Structure
© 2020 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 37 vom: 23. Sept., Seite e2002945 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Cs5Cu3Cl6I2 Pb-free luminescent halides air stability high PLQY mixed anions |
Zusammenfassung: | © 2020 Wiley-VCH GmbH. In the field of photonics, alkali copper(I) halides attract considerable attention as lead-free emitters. The intrinsic quantum confinement effects originating from low-dimensional electronic structure lead to high photoluminescence quantum yields (PLQYs). Among them, Cs3 Cu2 I5 is the most promising candidate, satisfying both high PLQY and air stability. In this study, a strategy to explore a new material meeting these requirements through the use of the mixed-anions of I- and Cl- is proposed. The expectation is maintained that the large difference in ionic radii between them likely results in the formation of a novel compound. Consequently, Cs5 Cu3 Cl6 I2 with a 1D zigzag chain structure is discovered. This material exhibits blue emission (≈462 nm) with a near-unity quantum yield of 95%. An electronic structure calculation reveals that the localized nature of the valence band maximum is crucial in obtaining efficient self-trapped exciton emission. Moreover, the iodine-bridged 1D connectivity significantly enhances the chemical stability of Cs5 Cu3 Cl6 I2 , compared with the pure chloride phase. The present findings provide a new perspective for developing air-stable alkali copper(I) halides with highly efficient luminescence |
---|---|
Beschreibung: | Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202002945 |