Background Noise Filtering and Distribution Dividing for Crowd Counting

Crowd counting is a challenging problem due to the diverse crowd distribution and background interference. In this paper, we propose a new approach for head size estimation to reduce the impact of different crowd scale and background noise. Different from just using local information of distance bet...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 06. Aug.
1. Verfasser: Mo, Hong (VerfasserIn)
Weitere Verfasser: Ren, Wenqi, Xiong, Yuan, Pan, Xiaoqi, Zhou, Zhong, Cao, Xiaochun, Wu, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM313342164
003 DE-627
005 20240229163142.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3009030  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM313342164 
035 |a (NLM)32759083 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mo, Hong  |e verfasserin  |4 aut 
245 1 0 |a Background Noise Filtering and Distribution Dividing for Crowd Counting 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Crowd counting is a challenging problem due to the diverse crowd distribution and background interference. In this paper, we propose a new approach for head size estimation to reduce the impact of different crowd scale and background noise. Different from just using local information of distance between human heads, the global information of the people distribution in the whole image is also under consideration. We obey the order of far- to near-region (small to large) to spread head size, and ensure that the propagation is uninterrupted by inserting dummy head points. The estimated head size is further exploited, such as dividing the crowd into parts of different densities and generating a high-fidelity head mask. On the other hand, we design three different head mask usage mechanisms and the corresponding head masks to analyze where and which mask could lead to better background filtering1. Based on the learned masks, two competitive models are proposed which can perform robust crowd estimation against background noise and diverse crowd scale. We evaluate the proposed method on three public crowd counting datasets of ShanghaiTech [2], UCFQNRF [3] and UCFCC_50 [4]. Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art crowd counting approaches 
650 4 |a Journal Article 
700 1 |a Ren, Wenqi  |e verfasserin  |4 aut 
700 1 |a Xiong, Yuan  |e verfasserin  |4 aut 
700 1 |a Pan, Xiaoqi  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhong  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Wu, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 06. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:06  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3009030  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 06  |c 08