DeFusionNET : Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features

Albeit great success has been achieved in image defocus blur detection, there are still several unsolved challenges, e.g., interference of background clutter, scale sensitivity and missing boundary details of blur regions. To deal with these issues, we propose a deep neural network which recurrently...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 04. Feb., Seite 955-968
1. Verfasser: Tang, Chang (VerfasserIn)
Weitere Verfasser: Liu, Xinwang, Zheng, Xiao, Li, Wanqing, Xiong, Jian, Wang, Lizhe, Zomaya, Albert Y, Longo, Antonella
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article