Gabor Feature Based LogDemons with Inertial Constraint for Nonrigid Image Registration

Nonrigid image registration plays an important role in the field of computer vision and medical application. The methods based on Demons algorithm for image registration usually use intensity difference as similarity criteria. However, intensity based methods can not preserve image texture details w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2020) vom: 05. Aug.
1. Verfasser: Wen, Ying (VerfasserIn)
Weitere Verfasser: Xu, Cheng, Lu, Yue, Li, Qingli, Cai, Haibin, He, Lianghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM313310718
003 DE-627
005 20240229163140.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2020.3013169  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM313310718 
035 |a (NLM)32755862 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wen, Ying  |e verfasserin  |4 aut 
245 1 0 |a Gabor Feature Based LogDemons with Inertial Constraint for Nonrigid Image Registration 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Nonrigid image registration plays an important role in the field of computer vision and medical application. The methods based on Demons algorithm for image registration usually use intensity difference as similarity criteria. However, intensity based methods can not preserve image texture details well and are limited by local minima. In order to solve these problems, we propose a Gabor feature based LogDemons registration method in this paper, called GFDemons. We extract Gabor features of the registered images to construct feature similarity metric since Gabor filters are suitable to extract image texture information. Furthermore, because of the weak gradients in some image regions, the update fields are too small to transform the moving image to the fixed image correctly. In order to compensate this deficiency, we propose an inertial constraint strategy based on GFDemons, named IGFDemons, using the previous update fields to provide guided information for the current update field. The inertial constraint strategy can further improve the performance of the proposed method in terms of accuracy and convergence. We conduct experiments on three different types of images and the results demonstrate that the proposed methods achieve better performance than some popular methods 
650 4 |a Journal Article 
700 1 |a Xu, Cheng  |e verfasserin  |4 aut 
700 1 |a Lu, Yue  |e verfasserin  |4 aut 
700 1 |a Li, Qingli  |e verfasserin  |4 aut 
700 1 |a Cai, Haibin  |e verfasserin  |4 aut 
700 1 |a He, Lianghua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2020) vom: 05. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2020  |g day:05  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2020.3013169  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2020  |b 05  |c 08