U2Fusion : A Unified Unsupervised Image Fusion Network

This study proposes a novel unified and unsupervised end-to-end image fusion network, termed as U2Fusion, which is capable of solving different fusion problems, including multi-modal, multi-exposure, and multi-focus cases. Using feature extraction and information measurement, U2Fusion automatically...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 502-518
1. Verfasser: Xu, Han (VerfasserIn)
Weitere Verfasser: Ma, Jiayi, Jiang, Junjun, Guo, Xiaojie, Ling, Haibin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM313260788
003 DE-627
005 20231225150210.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3012548  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260788 
035 |a (NLM)32750838 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Han  |e verfasserin  |4 aut 
245 1 0 |a U2Fusion  |b A Unified Unsupervised Image Fusion Network 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study proposes a novel unified and unsupervised end-to-end image fusion network, termed as U2Fusion, which is capable of solving different fusion problems, including multi-modal, multi-exposure, and multi-focus cases. Using feature extraction and information measurement, U2Fusion automatically estimates the importance of corresponding source images and comes up with adaptive information preservation degrees. Hence, different fusion tasks are unified in the same framework. Based on the adaptive degrees, a network is trained to preserve the adaptive similarity between the fusion result and source images. Therefore, the stumbling blocks in applying deep learning for image fusion, e.g., the requirement of ground-truth and specifically designed metrics, are greatly mitigated. By avoiding the loss of previous fusion capabilities when training a single model for different tasks sequentially, we obtain a unified model that is applicable to multiple fusion tasks. Moreover, a new aligned infrared and visible image dataset, RoadScene (available at https://github.com/hanna-xu/RoadScene), is released to provide a new option for benchmark evaluation. Qualitative and quantitative experimental results on three typical image fusion tasks validate the effectiveness and universality of U2Fusion. Our code is publicly available at https://github.com/hanna-xu/U2Fusion 
650 4 |a Journal Article 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Guo, Xiaojie  |e verfasserin  |4 aut 
700 1 |a Ling, Haibin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 15. Jan., Seite 502-518  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:15  |g month:01  |g pages:502-518 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3012548  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 15  |c 01  |h 502-518