DeepSPIO : Super Paramagnetic Iron Oxide Particle Quantification Using Deep Learning in Magnetic Resonance Imaging

The susceptibility of super paramagnetic iron oxide (SPIO) particles makes them a useful contrast agent for different purposes in MRI. These particles are typically quantified with relaxometry or by measuring the inhomogeneities they produced. These methods rely on the phase, which is unreliable for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 143-153
1. Verfasser: Maggiora, Gabriel Della (VerfasserIn)
Weitere Verfasser: Castillo-Passi, Carlos, Qiu, Wenqi, Liu, Shuang, Milovic, Carlos, Sekino, Masaki, Tejos, Cristian, Uribe, Sergio, Irarrazaval, Pablo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Ferric Compounds ferric oxide 1K09F3G675
LEADER 01000naa a22002652 4500
001 NLM313260745
003 DE-627
005 20231225150210.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3012103  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260745 
035 |a (NLM)32750834 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Maggiora, Gabriel Della  |e verfasserin  |4 aut 
245 1 0 |a DeepSPIO  |b Super Paramagnetic Iron Oxide Particle Quantification Using Deep Learning in Magnetic Resonance Imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2022 
500 |a Date Revised 10.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The susceptibility of super paramagnetic iron oxide (SPIO) particles makes them a useful contrast agent for different purposes in MRI. These particles are typically quantified with relaxometry or by measuring the inhomogeneities they produced. These methods rely on the phase, which is unreliable for high concentrations. We present in this study a novel Deep Learning method to quantify the SPIO concentration distribution. We acquired the data with a new sequence called View Line in which the field map information is encoded in the geometry of the image. The novelty of our network is that it uses residual blocks as the bottleneck and multiple decoders to improve the gradient flow in the network. Each decoder predicts a different part of the wavelet decomposition of the concentration map. This decomposition improves the estimation of the concentration, and also it accelerates the convergence of the model. We tested our SPIO concentration reconstruction technique with simulated images and data from actual scans from phantoms. The simulations were done using images from the IXI dataset, and the phantoms consisted of plastic cylinders containing agar with SPIO particles at different concentrations. In both experiments, the model was able to quantify the distribution accurately 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Ferric Compounds  |2 NLM 
650 7 |a ferric oxide  |2 NLM 
650 7 |a 1K09F3G675  |2 NLM 
700 1 |a Castillo-Passi, Carlos  |e verfasserin  |4 aut 
700 1 |a Qiu, Wenqi  |e verfasserin  |4 aut 
700 1 |a Liu, Shuang  |e verfasserin  |4 aut 
700 1 |a Milovic, Carlos  |e verfasserin  |4 aut 
700 1 |a Sekino, Masaki  |e verfasserin  |4 aut 
700 1 |a Tejos, Cristian  |e verfasserin  |4 aut 
700 1 |a Uribe, Sergio  |e verfasserin  |4 aut 
700 1 |a Irarrazaval, Pablo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 15. Jan., Seite 143-153  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:15  |g month:01  |g pages:143-153 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3012103  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 15  |c 01  |h 143-153