Improving Generative Adversarial Networks With Local Coordinate Coding

Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution (e.g., Gaussian noises). However, such prior distribution is often independent of real data and thus may lose semantic information (e.g., geometric structure or c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 211-227
1. Verfasser: Cao, Jiezhang (VerfasserIn)
Weitere Verfasser: Guo, Yong, Wu, Qingyao, Shen, Chunhua, Huang, Junzhou, Tan, Mingkui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM313260737
003 DE-627
005 20250227173841.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3012096  |2 doi 
028 5 2 |a pubmed25n1044.xml 
035 |a (DE-627)NLM313260737 
035 |a (NLM)32750833 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cao, Jiezhang  |e verfasserin  |4 aut 
245 1 0 |a Improving Generative Adversarial Networks With Local Coordinate Coding 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution (e.g., Gaussian noises). However, such prior distribution is often independent of real data and thus may lose semantic information (e.g., geometric structure or content in images) of data. In practice, the semantic information might be represented by some latent distribution learned from data. However, such latent distribution may incur difficulties in data sampling for GAN methods. In this paper, rather than sampling from the predefined prior distribution, we propose a GAN model with local coordinate coding (LCC), termed LCCGAN, to improve the performance of the image generation. First, we propose an LCC sampling method in LCCGAN to sample meaningful points from the latent manifold. With the LCC sampling method, we can explicitly exploit the local information on the latent manifold and thus produce new data with promising quality. Second, we propose an improved version, namely LCCGAN++, by introducing a higher-order term in the generator approximation. This term is able to achieve better approximation and thus further improve the performance. More critically, we derive the generalization bound for both LCCGAN and LCCGAN++ and prove that a low-dimensional input is sufficient to achieve good generalization performance. Extensive experiments on several benchmark datasets demonstrate the superiority of the proposed method over existing GAN methods 
650 4 |a Journal Article 
700 1 |a Guo, Yong  |e verfasserin  |4 aut 
700 1 |a Wu, Qingyao  |e verfasserin  |4 aut 
700 1 |a Shen, Chunhua  |e verfasserin  |4 aut 
700 1 |a Huang, Junzhou  |e verfasserin  |4 aut 
700 1 |a Tan, Mingkui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 15. Jan., Seite 211-227  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:15  |g month:01  |g pages:211-227 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3012096  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 15  |c 01  |h 211-227