Learning Backtrackless Aligned-Spatial Graph Convolutional Networks for Graph Classification

In this paper, we develop a novel backtrackless aligned-spatial graph convolutional network (BASGCN) model to learn effective features for graph classification. Our idea is to transform arbitrary-sized graphs into fixed-sized backtrackless aligned grid structures and define a new spatial graph convo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 15. Feb., Seite 783-798
1. Verfasser: Bai, Lu (VerfasserIn)
Weitere Verfasser: Cui, Lixin, Jiao, Yuhang, Rossi, Luca, Hancock, Edwin R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article