Learning Backtrackless Aligned-Spatial Graph Convolutional Networks for Graph Classification
In this paper, we develop a novel backtrackless aligned-spatial graph convolutional network (BASGCN) model to learn effective features for graph classification. Our idea is to transform arbitrary-sized graphs into fixed-sized backtrackless aligned grid structures and define a new spatial graph convo...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 15. Feb., Seite 783-798
|
1. Verfasser: |
Bai, Lu
(VerfasserIn) |
Weitere Verfasser: |
Cui, Lixin,
Jiao, Yuhang,
Rossi, Luca,
Hancock, Edwin R |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |