A Geometrical Perspective on Image Style Transfer With Adversarial Learning

Recent years witness the booming trend of applying generative adversarial nets (GAN) and its variants to image style transfer. Although many reported results strongly demonstrate the power of GAN on this task, there is still little known about neither the interpretations of several fundamental pheno...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 63-75
1. Verfasser: Pan, Xudong (VerfasserIn)
Weitere Verfasser: Zhang, Mi, Ding, Daizong, Yang, Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM313260699
003 DE-627
005 20231225150210.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3011143  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260699 
035 |a (NLM)32750829 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Xudong  |e verfasserin  |4 aut 
245 1 2 |a A Geometrical Perspective on Image Style Transfer With Adversarial Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent years witness the booming trend of applying generative adversarial nets (GAN) and its variants to image style transfer. Although many reported results strongly demonstrate the power of GAN on this task, there is still little known about neither the interpretations of several fundamental phenomenons of image style transfer by generative adversarial learning, nor its underlying mechanism. To bridge this gap, this paper presents a general framework for analyzing style transfer with adversarial learning through the lens of differential geometry. To demonstrate the utility of our proposed framework, we provide an in-depth analysis of Isola et al.'s pioneering style transfer model pix2pix [1] and reach a comprehensive interpretation on their major experimental phenomena. Furthermore, we extend the notion of generalization to conditional GAN and derive a condition to control the generalization capability of the pix2pix model. From a higher viewpoint, we further prove a learning-free condition to guarantee the existence of infinitely many perfect style transfer mappings. Besides, we also provide a number of practical suggestions on model design and dataset construction based on these derived theoretical results to facilitate further researches 
650 4 |a Journal Article 
700 1 |a Zhang, Mi  |e verfasserin  |4 aut 
700 1 |a Ding, Daizong  |e verfasserin  |4 aut 
700 1 |a Yang, Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 15. Jan., Seite 63-75  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:15  |g month:01  |g pages:63-75 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3011143  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 15  |c 01  |h 63-75