GarNet++ : Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss

In this paper, we tackle the problem of static 3D cloth draping on virtual human bodies. We introduce a two-stream deep network model that produces a visually plausible draping of a template cloth on virtual 3D bodies by extracting features from both the body and garment shapes. Our network learns t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 181-195
1. Verfasser: Gundogdu, Erhan (VerfasserIn)
Weitere Verfasser: Constantin, Victor, Parashar, Shaifali, Seifoddini, Amrollah, Dang, Minh, Salzmann, Mathieu, Fua, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM313260656
003 DE-627
005 20231225150209.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3010886  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260656 
035 |a (NLM)32750825 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gundogdu, Erhan  |e verfasserin  |4 aut 
245 1 0 |a GarNet++  |b Improving Fast and Accurate Static 3D Cloth Draping by Curvature Loss 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2022 
500 |a Date Revised 10.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we tackle the problem of static 3D cloth draping on virtual human bodies. We introduce a two-stream deep network model that produces a visually plausible draping of a template cloth on virtual 3D bodies by extracting features from both the body and garment shapes. Our network learns to mimic a physics-based simulation (PBS) method while requiring two orders of magnitude less computation time. To train the network, we introduce loss terms inspired by PBS to produce plausible results and make the model collision-aware. To increase the details of the draped garment, we introduce two loss functions that penalize the difference between the curvature of the predicted cloth and PBS. Particularly, we study the impact of mean curvature normal and a novel detail-preserving loss both qualitatively and quantitatively. Our new curvature loss computes the local covariance matrices of the 3D points, and compares the Rayleigh quotients of the prediction and PBS. This leads to more details while performing favorably or comparably against the loss that considers mean curvature normal vectors in the 3D triangulated meshes. We validate our framework on four garment types for various body shapes and poses. Finally, we achieve superior performance against a recently proposed data-driven method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Constantin, Victor  |e verfasserin  |4 aut 
700 1 |a Parashar, Shaifali  |e verfasserin  |4 aut 
700 1 |a Seifoddini, Amrollah  |e verfasserin  |4 aut 
700 1 |a Dang, Minh  |e verfasserin  |4 aut 
700 1 |a Salzmann, Mathieu  |e verfasserin  |4 aut 
700 1 |a Fua, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 15. Jan., Seite 181-195  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:15  |g month:01  |g pages:181-195 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3010886  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 15  |c 01  |h 181-195