A Fast Binary Quadratic Programming Solver Based on Stochastic Neighborhood Search

Many image processing and pattern recognition problems can be formulated as binary quadratic programming (BQP) problems. However, solving a large BQP problem with a good quality solution and low computational time is still a challenging unsolved problem. Current methodologies either adopt an indepen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 15. Jan., Seite 32-49
1. Verfasser: Lam, Benson Shu Yan (VerfasserIn)
Weitere Verfasser: Liew, Alan Wee-Chung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM313260648
003 DE-627
005 20231225150209.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3010811  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260648 
035 |a (NLM)32750824 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lam, Benson Shu Yan  |e verfasserin  |4 aut 
245 1 2 |a A Fast Binary Quadratic Programming Solver Based on Stochastic Neighborhood Search 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many image processing and pattern recognition problems can be formulated as binary quadratic programming (BQP) problems. However, solving a large BQP problem with a good quality solution and low computational time is still a challenging unsolved problem. Current methodologies either adopt an independent random search in a semi-definite space or perform search in a relaxed biconvex space. However, the independent search has great computation cost as many different trials are needed to get a good solution. The biconvex search only searches the solution in a local convex ball, which can be a local optimal solution. In this paper, we propose a BQP solver that alternatingly applies a deterministic search and a stochastic neighborhood search. The deterministic search iteratively improves the solution quality until it satisfies the KKT optimality conditions. The stochastic search performs bootstrapping sampling to the objective function constructed from the potential solution to find a stochastic neighborhood vector. These two steps are repeated until the obtained solution is better than many of its stochastic neighborhood vectors. We compare the proposed solver with several state-of-the-art methods for a range of image processing and pattern recognition problems. Experimental results showed that the proposed solver not only outperformed them in solution quality but also with the lowest computational complexity 
650 4 |a Journal Article 
700 1 |a Liew, Alan Wee-Chung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 15. Jan., Seite 32-49  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:15  |g month:01  |g pages:32-49 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3010811  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 15  |c 01  |h 32-49