Improving Machine Vision Using Human Perceptual Representations : The Case of Planar Reflection Symmetry for Object Classification

Achieving human-like visual abilities is a holy grail for machine vision, yet precisely how insights from human vision can improve machines has remained unclear. Here, we demonstrate two key conceptual advances: First, we show that most machine vision models are systematically different from human o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 1 vom: 30. Jan., Seite 228-241
1. Verfasser: Pramod, R T (VerfasserIn)
Weitere Verfasser: Arun, S P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM313260494
003 DE-627
005 20231225150209.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3008107  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260494 
035 |a (NLM)32750809 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pramod, R T  |e verfasserin  |4 aut 
245 1 0 |a Improving Machine Vision Using Human Perceptual Representations  |b The Case of Planar Reflection Symmetry for Object Classification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2022 
500 |a Date Revised 10.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Achieving human-like visual abilities is a holy grail for machine vision, yet precisely how insights from human vision can improve machines has remained unclear. Here, we demonstrate two key conceptual advances: First, we show that most machine vision models are systematically different from human object perception. To do so, we collected a large dataset of perceptual distances between isolated objects in humans and asked whether these perceptual data can be predicted by many common machine vision algorithms. We found that while the best algorithms explain  ∼ 70 percent of the variance in the perceptual data, all the algorithms we tested make systematic errors on several types of objects. In particular, machine algorithms underestimated distances between symmetric objects compared to human perception. Second, we show that fixing these systematic biases can lead to substantial gains in classification performance. In particular, augmenting a state-of-the-art convolutional neural network with planar/reflection symmetry scores along multiple axes produced significant improvements in classification accuracy (1-10 percent) across categories. These results show that machine vision can be improved by discovering and fixing systematic differences from human vision 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Arun, S P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 1 vom: 30. Jan., Seite 228-241  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:1  |g day:30  |g month:01  |g pages:228-241 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3008107  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 1  |b 30  |c 01  |h 228-241