Robust Multi-Task Learning With Flexible Manifold Constraint

Multi-Task Learning attempts to explore and mine the sufficient information within multiple related tasks for the better solutions. However, the performance of the existing multi-task approaches would largely degenerate when dealing with the polluted data, i.e., outliers. In this paper, we propose a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 6 vom: 30. Juni, Seite 2150-2157
1. Verfasser: Zhang, Rui (VerfasserIn)
Weitere Verfasser: Zhang, Hongyuan, Li, Xuelong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM313260451
003 DE-627
005 20231225150209.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3007637  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260451 
035 |a (NLM)32750806 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Rui  |e verfasserin  |4 aut 
245 1 0 |a Robust Multi-Task Learning With Flexible Manifold Constraint 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-Task Learning attempts to explore and mine the sufficient information within multiple related tasks for the better solutions. However, the performance of the existing multi-task approaches would largely degenerate when dealing with the polluted data, i.e., outliers. In this paper, we propose a novel robust multi-task model by incorporating a flexible manifold constraint (FMC-MTL) and a robust loss. Specifically speaking, multi-task subspace is embedded with a relaxed and generalized Stiefel Manifold for considering point-wise correlation and preserving the data structure simultaneously. In addition, a robust loss function is developed to ensure the robustness to outliers by smoothly interpolating between l2,1-norm and squared Frobenius norm. Equipped with an efficient algorithm, FMC-MTL serves as a robust solution to tackling the severely polluted data. Moreover, extensive experiments are conducted to verify the superiority of our model. Compared to the state-of-the-art multi-task models, the proposed FMC-MTL model demonstrates remarkable robustness to the contaminated data 
650 4 |a Journal Article 
700 1 |a Zhang, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 6 vom: 30. Juni, Seite 2150-2157  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:6  |g day:30  |g month:06  |g pages:2150-2157 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3007637  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 6  |b 30  |c 06  |h 2150-2157