On Connections Between Regularizations for Improving DNN Robustness

This paper analyzes regularization terms proposed recently for improving the adversarial robustness of deep neural networks (DNNs), from a theoretical point of view. Specifically, we study possible connections between several effective methods, including input-gradient regularization, Jacobian regul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 12 vom: 30. Dez., Seite 4469-4476
1. Verfasser: Guo, Yiwen (VerfasserIn)
Weitere Verfasser: Chen, Long, Chen, Yurong, Zhang, Changshui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM313260419
003 DE-627
005 20231225150209.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3006917  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260419 
035 |a (NLM)32750801 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Yiwen  |e verfasserin  |4 aut 
245 1 0 |a On Connections Between Regularizations for Improving DNN Robustness 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.12.2021 
500 |a Date Revised 14.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper analyzes regularization terms proposed recently for improving the adversarial robustness of deep neural networks (DNNs), from a theoretical point of view. Specifically, we study possible connections between several effective methods, including input-gradient regularization, Jacobian regularization, curvature regularization, and a cross-Lipschitz functional. We investigate them on DNNs with general rectified linear activations, which constitute one of the most prevalent families of models for image classification and a host of other machine learning applications. We shed light on essential ingredients of these regularizations and re-interpret their functionality. Through the lens of our study, more principled and efficient regularizations can possibly be invented in the near future 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chen, Long  |e verfasserin  |4 aut 
700 1 |a Chen, Yurong  |e verfasserin  |4 aut 
700 1 |a Zhang, Changshui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 12 vom: 30. Dez., Seite 4469-4476  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:12  |g day:30  |g month:12  |g pages:4469-4476 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3006917  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 12  |b 30  |c 12  |h 4469-4476