Combinatorial Learning of Robust Deep Graph Matching : An Embedding Based Approach

Graph matching aims to establish node correspondence between two graphs, which has been a fundamental problem for its NP-hard nature. One practical consideration is the effective modeling of the affinity function in the presence of noise, such that the mathematically optimal matching result is also...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 30. Juni, Seite 6984-7000
1. Verfasser: Wang, Runzhong (VerfasserIn)
Weitere Verfasser: Yan, Junchi, Yang, Xiaokang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM313260400
003 DE-627
005 20250227173838.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3005590  |2 doi 
028 5 2 |a pubmed25n1044.xml 
035 |a (DE-627)NLM313260400 
035 |a (NLM)32750800 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Runzhong  |e verfasserin  |4 aut 
245 1 0 |a Combinatorial Learning of Robust Deep Graph Matching  |b An Embedding Based Approach 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph matching aims to establish node correspondence between two graphs, which has been a fundamental problem for its NP-hard nature. One practical consideration is the effective modeling of the affinity function in the presence of noise, such that the mathematically optimal matching result is also physically meaningful. This paper resorts to deep neural networks to learn the node and edge feature, as well as the affinity model for graph matching in an end-to-end fashion. The learning is supervised by combinatorial permutation loss over nodes. Specifically, the parameters belong to convolutional neural networks for image feature extraction, graph neural networks for node embedding that convert the structural (beyond second-order) information into node-wise features that leads to a linear assignment problem, as well as the affinity kernel between two graphs. Our approach enjoys flexibility in that the permutation loss is agnostic to the number of nodes, and the embedding model is shared among nodes such that the network can deal with varying numbers of nodes for both training and inference. Moreover, our network is class-agnostic. Experimental results on extensive benchmarks show its state-of-the-art performance. It bears some generalization capability across categories and datasets, and is capable for robust matching against outliers 
650 4 |a Journal Article 
700 1 |a Yan, Junchi  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaokang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 30. Juni, Seite 6984-7000  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:30  |g month:06  |g pages:6984-7000 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3005590  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 30  |c 06  |h 6984-7000