Deep Autoencoding Topic Model With Scalable Hybrid Bayesian Inference

To build a flexible and interpretable model for document analysis, we develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network. In order to provide scalable posterior inference for the parameters of the gener...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 12 vom: 30. Dez., Seite 4306-4322
1. Verfasser: Zhang, Hao (VerfasserIn)
Weitere Verfasser: Chen, Bo, Cong, Yulai, Guo, Dandan, Liu, Hongwei, Zhou, Mingyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM313260303
003 DE-627
005 20231225150209.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3003660  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313260303 
035 |a (NLM)32750790 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Hao  |e verfasserin  |4 aut 
245 1 0 |a Deep Autoencoding Topic Model With Scalable Hybrid Bayesian Inference 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a To build a flexible and interpretable model for document analysis, we develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network. In order to provide scalable posterior inference for the parameters of the generative network, we develop topic-layer-adaptive stochastic gradient Riemannian MCMC that jointly learns simplex-constrained global parameters across all layers and topics, with topic and layer specific learning rates. Given a posterior sample of the global parameters, in order to efficiently infer the local latent representations of a document under DATM across all stochastic layers, we propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a Weibull distribution based stochastic downward generative model. To jointly model documents and their associated labels, we further propose supervised DATM that enhances the discriminative power of its latent representations. The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora 
650 4 |a Journal Article 
700 1 |a Chen, Bo  |e verfasserin  |4 aut 
700 1 |a Cong, Yulai  |e verfasserin  |4 aut 
700 1 |a Guo, Dandan  |e verfasserin  |4 aut 
700 1 |a Liu, Hongwei  |e verfasserin  |4 aut 
700 1 |a Zhou, Mingyuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 12 vom: 30. Dez., Seite 4306-4322  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:12  |g day:30  |g month:12  |g pages:4306-4322 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3003660  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 12  |b 30  |c 12  |h 4306-4322