Multi-View Representation Learning With Deep Gaussian Processes

Multi-view representation learning is a promising and challenging research topic, which aims to integrate multiple data information from different views to improve the learning performance. The recent deep Gaussian processes (DGPs) have the advantages of good uncertainty estimates, powerful non-line...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 12 vom: 30. Dez., Seite 4453-4468
1. Verfasser: Sun, Shiliang (VerfasserIn)
Weitere Verfasser: Dong, Wenbo, Liu, Qiuyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM313260222
003 DE-627
005 20250227173836.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2020.3001433  |2 doi 
028 5 2 |a pubmed25n1044.xml 
035 |a (DE-627)NLM313260222 
035 |a (NLM)32750782 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Shiliang  |e verfasserin  |4 aut 
245 1 0 |a Multi-View Representation Learning With Deep Gaussian Processes 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view representation learning is a promising and challenging research topic, which aims to integrate multiple data information from different views to improve the learning performance. The recent deep Gaussian processes (DGPs) have the advantages of good uncertainty estimates, powerful non-linear mapping ability and great generalization capability, which can be used as an excellent data representation learning method. However, DGPs only focus on single view data and are rarely applied to the multi-view scenario. In this paper, we propose a multi-view representation learning algorithm with deep Gaussian processes (named MvDGPs), which inherits the advantages of deep Gaussian processes and multi-view representation learning, and can learn more effective representation of multi-view data. The MvDGPs consist of two stages. The first stage is multi-view data representation learning, which is mainly used to learn more comprehensive representations of multi-view data. The second stage is classifier design, which aims to select an appropriate classifier to better employ the representations obtained in the first stage. In contrast with DGPs, MvDGPs support asymmetrical modeling depths for different views of data, resulting in better characterizations of the discrepancies among different views. Experimental results on real-world multi-view data sets verify the effectiveness of the proposed algorithm, which indicates that MvDGPs can integrate the complementary information in multiple views to discover a good representation of the data 
650 4 |a Journal Article 
700 1 |a Dong, Wenbo  |e verfasserin  |4 aut 
700 1 |a Liu, Qiuyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 12 vom: 30. Dez., Seite 4453-4468  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:43  |g year:2021  |g number:12  |g day:30  |g month:12  |g pages:4453-4468 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2020.3001433  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 12  |b 30  |c 12  |h 4453-4468