Visual Analysis of Class Separations With Locally Linear Segments

High-dimensional labeled data widely exists in many real-world applications such as classification and clustering. One main task in analyzing such datasets is to explore class separations and class boundaries derived from machine learning models. Dimension reduction techniques are commonly applied t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 1 vom: 30. Jan., Seite 241-253
1. Verfasser: Ma, Yuxin (VerfasserIn)
Weitere Verfasser: Maciejewski, Ross
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM313216053
003 DE-627
005 20231225150111.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3011155  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313216053 
035 |a (NLM)32746282 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Yuxin  |e verfasserin  |4 aut 
245 1 0 |a Visual Analysis of Class Separations With Locally Linear Segments 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a High-dimensional labeled data widely exists in many real-world applications such as classification and clustering. One main task in analyzing such datasets is to explore class separations and class boundaries derived from machine learning models. Dimension reduction techniques are commonly applied to support analysts in exploring the underlying decision boundary structures by depicting a low-dimensional representation of the data distributions from multiple classes. However, such projection-based analyses are limited due to their lack of ability to show separations in complex non-linear decision boundary structures and can suffer from heavy distortion and low interpretability. To overcome these issues of separability and interpretability, we propose a visual analysis approach that utilizes the power of explainability from linear projections to support analysts when exploring non-linear separation structures. Our approach is to extract a set of locally linear segments that approximate the original non-linear separations. Unlike traditional projection-based analysis where the data instances are mapped to a single scatterplot, our approach supports the exploration of complex class separations through multiple local projection results. We conduct case studies on two labeled datasets to demonstrate the effectiveness of our approach 
650 4 |a Journal Article 
700 1 |a Maciejewski, Ross  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 1 vom: 30. Jan., Seite 241-253  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:1  |g day:30  |g month:01  |g pages:241-253 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3011155  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 1  |b 30  |c 01  |h 241-253