PyramidTags : Context-, Time- and Word Order-Aware Tag Maps to Explore Large Document Collections

It is difficult to explore large text collections if no or little information is available on the contained documents. Hence, starting analytic tasks on such corpora is challenging for many stakeholders from various domains. As a remedy, recent visualization research suggests to use visual spatializ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 12 vom: 30. Dez., Seite 4455-4468
1. Verfasser: Knittel, Johannes (VerfasserIn)
Weitere Verfasser: Koch, Steffen, Ertl, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM313216010
003 DE-627
005 20231225150111.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3010095  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313216010 
035 |a (NLM)32746277 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Knittel, Johannes  |e verfasserin  |4 aut 
245 1 0 |a PyramidTags  |b Context-, Time- and Word Order-Aware Tag Maps to Explore Large Document Collections 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.11.2021 
500 |a Date Revised 02.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a It is difficult to explore large text collections if no or little information is available on the contained documents. Hence, starting analytic tasks on such corpora is challenging for many stakeholders from various domains. As a remedy, recent visualization research suggests to use visual spatializations of representative text documents or tags to explore text collections. With PyramidTags, we introduce a novel approach for summarizing large text collections visually. In contrast to previous work, PyramidTags in particular aims at creating an improved representation that incorporates both temporal evolution and semantic relationship of visualized tags within the summarized document collection. As a result, it equips analysts with a visual starting point for interactive exploration to not only get an overview of the main terms and phrases of the corpus, but also to grasp important ideas and stories. Analysts can hover and select multiple tags to explore relationships and retrieve the most relevant documents. In this work, we apply PyramidTags to hundreds of thousands of web-crawled news reports. Our benchmarks suggest that PyramidTags creates time- and context-aware layouts, while preserving the inherent word order of important pairs 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Koch, Steffen  |e verfasserin  |4 aut 
700 1 |a Ertl, Thomas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 12 vom: 30. Dez., Seite 4455-4468  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:12  |g day:30  |g month:12  |g pages:4455-4468 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3010095  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 12  |b 30  |c 12  |h 4455-4468