Active Colorization for Cartoon Line Drawings

In the animation industry, the colorization of raw sketch images is a vitally important but very time-consuming task. This article focuses on providing a novel solution that semiautomatically colorizes a set of images using a single colorized reference image. Our method is able to provide coherent c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 2 vom: 30. Feb., Seite 1198-1208
1. Verfasser: Chen, Shu-Yu (VerfasserIn)
Weitere Verfasser: Zhang, Jia-Qi, Gao, Lin, He, Yue, Xia, Shihong, Shi, Min, Zhang, Fang-Lue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In the animation industry, the colorization of raw sketch images is a vitally important but very time-consuming task. This article focuses on providing a novel solution that semiautomatically colorizes a set of images using a single colorized reference image. Our method is able to provide coherent colors for regions that have similar semantics to those in the reference image. An active-learning-based framework is used to match local regions, followed by mixed-integer quadratic programming (MIQP) which considers the spatial contexts to further refine the matching results. We efficiently utilize user interactions to achieve high accuracy in the final colorized images. Experiments show that our method outperforms the current state-of-the-art deep learning based colorization method in terms of color coherency with the reference image. The region matching framework could potentially be applied to other applications, such as color transfer
Beschreibung:Date Revised 31.12.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2020.3009949