PRS-Net : Planar Reflective Symmetry Detection Net for 3D Models

In geometry processing, symmetry is a universal type of high-level structural information of 3D models and benefits many geometry processing tasks including shape segmentation, alignment, matching, and completion. Thus it is an important problem to analyze various symmetry forms of 3D shapes. Planar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 6 vom: 30. Juni, Seite 3007-3018
1. Verfasser: Gao, Lin (VerfasserIn)
Weitere Verfasser: Zhang, Ling-Xiao, Meng, Hsien-Yu, Ren, Yi-Hui, Lai, Yu-Kun, Kobbelt, Leif
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM31321588X
003 DE-627
005 20231225150111.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.3003823  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM31321588X 
035 |a (NLM)32746265 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Lin  |e verfasserin  |4 aut 
245 1 0 |a PRS-Net  |b Planar Reflective Symmetry Detection Net for 3D Models 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In geometry processing, symmetry is a universal type of high-level structural information of 3D models and benefits many geometry processing tasks including shape segmentation, alignment, matching, and completion. Thus it is an important problem to analyze various symmetry forms of 3D shapes. Planar reflective symmetry is the most fundamental one. Traditional methods based on spatial sampling can be time-consuming and may not be able to identify all the symmetry planes. In this article, we present a novel learning framework to automatically discover global planar reflective symmetry of a 3D shape. Our framework trains an unsupervised 3D convolutional neural network to extract global model features and then outputs possible global symmetry parameters, where input shapes are represented using voxels. We introduce a dedicated symmetry distance loss along with a regularization loss to avoid generating duplicated symmetry planes. Our network can also identify generalized cylinders by predicting their rotation axes. We further provide a method to remove invalid and duplicated planes and axes. We demonstrate that our method is able to produce reliable and accurate results. Our neural network based method is hundreds of times faster than the state-of-the-art methods, which are based on sampling. Our method is also robust even with noisy or incomplete input surfaces 
650 4 |a Journal Article 
700 1 |a Zhang, Ling-Xiao  |e verfasserin  |4 aut 
700 1 |a Meng, Hsien-Yu  |e verfasserin  |4 aut 
700 1 |a Ren, Yi-Hui  |e verfasserin  |4 aut 
700 1 |a Lai, Yu-Kun  |e verfasserin  |4 aut 
700 1 |a Kobbelt, Leif  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 6 vom: 30. Juni, Seite 3007-3018  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:6  |g day:30  |g month:06  |g pages:3007-3018 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.3003823  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 6  |b 30  |c 06  |h 3007-3018