PICO : Procedural Iterative Constrained Optimizer for Geometric Modeling

Procedural modeling has produced amazing results, yet fundamental issues such as controllability and limited user guidance persist. We introduce a novel procedural model called PICO (Procedural Iterative Constrained Optimizer) and PICO-Graph that is the underlying procedural model designed with opti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 10 vom: 30. Okt., Seite 3968-3981
1. Verfasser: Krs, Vojtech (VerfasserIn)
Weitere Verfasser: Mech, Radomir, Gaillard, Mathieu, Carr, Nathan, Benes, Bedrich
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM313215782
003 DE-627
005 20231225150111.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2020.2995556  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313215782 
035 |a (NLM)32746255 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Krs, Vojtech  |e verfasserin  |4 aut 
245 1 0 |a PICO  |b Procedural Iterative Constrained Optimizer for Geometric Modeling 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Procedural modeling has produced amazing results, yet fundamental issues such as controllability and limited user guidance persist. We introduce a novel procedural model called PICO (Procedural Iterative Constrained Optimizer) and PICO-Graph that is the underlying procedural model designed with optimization in mind. The key novelty of PICO is that it enables the exploration of generative designs by combining both user and environmental constraints into a single framework by using optimization without the need to write procedural rules. The PICO-Graph procedural model consists of a set of geometry generating operations and a set of axioms connected in a directed cyclic graph. The forward generation is initiated by a set of axioms that use the connections to send coordinate systems and geometric objects through the PICO-Graph, which in turn generates more objects. This allows for fast generation of complex and varied geometries. Moreover, we combine PICO-Graph with efficient optimization that allows for quick exploration of the generated models and the generation of variants. The user defines the rules, the axioms, and the set of constraints; for example, whether an existing object should be supported by the generated model, whether symmetries exist, whether the object should spin, etc. PICO then generates a class of geometric models and optimizes them so that they fulfill the constraints. The generation and the optimization in our implementation provides interactive user control during model execution providing continuous feedback. For example, the user can sketch the constraints and guide the geometry to meet these specified goals. We show PICO on a variety of examples such as the generation of procedural chairs with multiple supports, generation of support structures for 3D printing, generation of spinning objects, or generation of procedural terrains matching a given input. Our framework could be used as a component in a larger design workflow; its strongest application is in the early rapid ideation and prototyping phases 
650 4 |a Journal Article 
700 1 |a Mech, Radomir  |e verfasserin  |4 aut 
700 1 |a Gaillard, Mathieu  |e verfasserin  |4 aut 
700 1 |a Carr, Nathan  |e verfasserin  |4 aut 
700 1 |a Benes, Bedrich  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 10 vom: 30. Okt., Seite 3968-3981  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:10  |g day:30  |g month:10  |g pages:3968-3981 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2020.2995556  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 10  |b 30  |c 10  |h 3968-3981