|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM31321574X |
003 |
DE-627 |
005 |
20250227172857.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2020.2994954
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1043.xml
|
035 |
|
|
|a (DE-627)NLM31321574X
|
035 |
|
|
|a (NLM)32746251
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Zhimin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a SpotSDC
|b Revealing the Silent Data Corruption Propagation in High-Performance Computing Systems
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.09.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The trend of rapid technology scaling is expected to make the hardware of high-performance computing (HPC) systems more susceptible to computational errors due to random bit flips. Some bit flips may cause a program to crash or have a minimal effect on the output, but others may lead to silent data corruption (SDC), i.e., undetected yet significant output errors. Classical fault injection analysis methods employ uniform sampling of random bit flips during program execution to derive a statistical resiliency profile. However, summarizing such fault injection result with sufficient detail is difficult, and understanding the behavior of the fault-corrupted program is still a challenge. In this article, we introduce SpotSDC, a visualization system to facilitate the analysis of a program's resilience to SDC. SpotSDC provides multiple perspectives at various levels of detail of the impact on the output relative to where in the source code the flipped bit occurs, which bit is flipped, and when during the execution it happens. SpotSDC also enables users to study the code protection and provide new insights to understand the behavior of a fault-injected program. Based on lessons learned, we demonstrate how what we found can improve the fault injection campaign method
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Menon, Harshitha
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Maljovec, Dan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Livnat, Yarden
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Shusen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mohror, Kathryn
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bremer, Peer-Timo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pascucci, Valerio
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 27(2021), 10 vom: 30. Okt., Seite 3938-3952
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnas
|
773 |
1 |
8 |
|g volume:27
|g year:2021
|g number:10
|g day:30
|g month:10
|g pages:3938-3952
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2020.2994954
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2021
|e 10
|b 30
|c 10
|h 3938-3952
|