Closed-Loop Low-Rank Echocardiographic Artifact Removal

Echocardiographic image sequences are frequently corrupted by quasi-static artifacts ("clutter") superimposed on the moving myocardium. Conventionally, localized blind source separation methods exploiting local correlation in the clutter have proven effective in the suppression of these ar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 3 vom: 21. März, Seite 510-525
1. Verfasser: Govinahallisathyanarayana, Sushanth (VerfasserIn)
Weitere Verfasser: Acton, Scott T, Hossack, John A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, N.I.H., Extramural
LEADER 01000caa a22002652c 4500
001 NLM313215561
003 DE-627
005 20250227172856.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2020.3013268  |2 doi 
028 5 2 |a pubmed25n1043.xml 
035 |a (DE-627)NLM313215561 
035 |a (NLM)32746233 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Govinahallisathyanarayana, Sushanth  |e verfasserin  |4 aut 
245 1 0 |a Closed-Loop Low-Rank Echocardiographic Artifact Removal 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.10.2021 
500 |a Date Revised 21.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Echocardiographic image sequences are frequently corrupted by quasi-static artifacts ("clutter") superimposed on the moving myocardium. Conventionally, localized blind source separation methods exploiting local correlation in the clutter have proven effective in the suppression of these artifacts. These methods use the spectral characteristics to distinguish the clutter from tissue and background noise and are applied exhaustively over the data set. The exhaustive application results in high computational complexity and a loss of useful tissue signal. In this article, we develop a closed-loop algorithm in which the clutter is first detected using an adaptively determined weighting function and then removed using low-rank estimation methods. We show that our method is adaptable to different low-rank estimators, by presenting two such estimators: sparse coding in the principal component domain and nuclear norm minimization. We compare the performance of our proposed method (CLEAR) with two methods: singular value filtering (SVF) and morphological component analysis (MCA). The performance was quantified in silico by measuring the error with respect to a known "ground truth" data set with no clutter for different combinations of moving clutter and tissue. Our method retains more tissue with a lower error of 3.88 ± 0.093 dB (sparse coding) and 3.47 ± 0.78 (nuclear norm) compared with the benchmark methods 8.5 ± 0.7 dB (SVF) and 9.3 ± 0.5 dB (MCA) particularly in instances where the rate of tissue motion and artifact motion is small (≤0.25 periods of center frequency per frame) while producing comparable clutter reduction performance. CLEAR was also validated in vivo by quantifying the tracking error over the cardiac cycle on five mouse heart data sets with synthetic clutter. CLEAR reduced the error by approximately 50%, compared with 25% for the SVF 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Acton, Scott T  |e verfasserin  |4 aut 
700 1 |a Hossack, John A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 68(2021), 3 vom: 21. März, Seite 510-525  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:68  |g year:2021  |g number:3  |g day:21  |g month:03  |g pages:510-525 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2020.3013268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 68  |j 2021  |e 3  |b 21  |c 03  |h 510-525