A PMN-PT Composite-Based Circular Array for Endoscopic Ultrasonic Imaging

Endoscopic ultrasound (EUS), an interventional imaging technology, utilizes a circular array to delineate the cross-sectional morphology of internal organs through the gastrointestinal (GI) track. However, the performance of conventional EUS transducers has scope for improvement because of the ordin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 67(2020), 11 vom: 21. Nov., Seite 2354-2362
1. Verfasser: Zhang, Qi (VerfasserIn)
Weitere Verfasser: Li, Yongchuan, Liu, Jiamei, Huang, Jiqing, Tan, Qingyuan, Wang, Congzhi, Xiao, Yang, Zheng, Hairong, Ma, Teng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Metals, Heavy
Beschreibung
Zusammenfassung:Endoscopic ultrasound (EUS), an interventional imaging technology, utilizes a circular array to delineate the cross-sectional morphology of internal organs through the gastrointestinal (GI) track. However, the performance of conventional EUS transducers has scope for improvement because of the ordinary piezoelectric parameters of Pb(Zr, Ti) [Formula: see text] (PZT) bulk ceramic as well as its inferior mechanical flexibility which can cause material cracks during the circular shaping process. To achieve both prominent imaging capabilities and high device reliability, a 128-element 6.8-MHz circular array transducer is developed using a Pb(Mg [Formula: see text]Nb [Formula: see text]) [Formula: see text]-PbTiO3 (PMN-PT) 1-3 composite with a coefficient of high electromechanical coupling ( [Formula: see text]) and good mechanical flexibility. The characterization results exhibit a large average bandwidth of 58%, a high average sensitivity of 100 mVpp, and a crosstalk of less than -37 dB near the center frequency. Imaging performance of the PMN-PT composite-based array transducer is evaluated by a wire phantom, an anechoic cyst phantom, and an ex-vivo swine intestine. This work demonstrates the superior performance of the crucial ultrasonic device based on an advanced PMN-PT composite material and may lead to the development of next-generation biomedical ultrasonic devices for clinical diagnosis and treatment
Beschreibung:Date Completed 28.06.2021
Date Revised 28.06.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2020.3005029