Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm

Shortness of breath is a major reason that patients present to the emergency department (ED) and point-of-care ultrasound (POCUS) has been shown to aid in diagnosis, particularly through evaluation for artifacts known as B-lines. B-line identification and quantification can be a challenging skill fo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 67(2020), 11 vom: 21. Nov., Seite 2312-2320
1. Verfasser: Baloescu, Cristiana (VerfasserIn)
Weitere Verfasser: Toporek, Grzegorz, Kim, Seungsoo, McNamara, Katelyn, Liu, Rachel, Shaw, Melissa M, McNamara, Robert L, Raju, Balasundar I, Moore, Christopher L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM313215057
003 DE-627
005 20231225150110.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2020.3002249  |2 doi 
028 5 2 |a pubmed24n1044.xml 
035 |a (DE-627)NLM313215057 
035 |a (NLM)32746183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Baloescu, Cristiana  |e verfasserin  |4 aut 
245 1 0 |a Automated Lung Ultrasound B-Line Assessment Using a Deep Learning Algorithm 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.06.2021 
500 |a Date Revised 28.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Shortness of breath is a major reason that patients present to the emergency department (ED) and point-of-care ultrasound (POCUS) has been shown to aid in diagnosis, particularly through evaluation for artifacts known as B-lines. B-line identification and quantification can be a challenging skill for novice ultrasound users, and experienced users could benefit from a more objective measure of quantification. We sought to develop and test a deep learning (DL) algorithm to quantify the assessment of B-lines in lung ultrasound. We utilized ultrasound clips ( n = 400 ) from an existing database of ED patients to provide training and test sets to develop and test the DL algorithm based on deep convolutional neural networks. Interpretations of the images by algorithm were compared to expert human interpretations on binary and severity (a scale of 0-4) classifications. Our model yielded a sensitivity of 93% (95% confidence interval (CI) 81%-98%) and a specificity of 96% (95% CI 84%-99%) for the presence or absence of B-lines compared to expert read, with a kappa of 0.88 (95% CI 0.79-0.97). Model to expert agreement for severity classification yielded a weighted kappa of 0.65 (95% CI 0.56-074). Overall, the DL algorithm performed well and could be integrated into an ultrasound system in order to help diagnose and track B-line severity. The algorithm is better at distinguishing the presence from the absence of B-lines but can also be successfully used to distinguish between B-line severity. Such methods could decrease variability and provide a standardized method for improved diagnosis and outcome 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Toporek, Grzegorz  |e verfasserin  |4 aut 
700 1 |a Kim, Seungsoo  |e verfasserin  |4 aut 
700 1 |a McNamara, Katelyn  |e verfasserin  |4 aut 
700 1 |a Liu, Rachel  |e verfasserin  |4 aut 
700 1 |a Shaw, Melissa M  |e verfasserin  |4 aut 
700 1 |a McNamara, Robert L  |e verfasserin  |4 aut 
700 1 |a Raju, Balasundar I  |e verfasserin  |4 aut 
700 1 |a Moore, Christopher L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 67(2020), 11 vom: 21. Nov., Seite 2312-2320  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:67  |g year:2020  |g number:11  |g day:21  |g month:11  |g pages:2312-2320 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2020.3002249  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 67  |j 2020  |e 11  |b 21  |c 11  |h 2312-2320