Probing Slow Earthquakes With Deep Learning

©2020. The Authors.

Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters. - 1984. - 47(2020), 4 vom: 28. Feb., Seite e2019GL085870
1. Verfasser: Rouet-Leduc, Bertrand (VerfasserIn)
Weitere Verfasser: Hulbert, Claudia, McBrearty, Ian W, Johnson, Paul A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Geophysical research letters
Schlagworte:Journal Article Cascadia deep learning machine learning slow earthquakes tectonic tremor
LEADER 01000caa a22002652 4500
001 NLM312898479
003 DE-627
005 20240329233739.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1029/2019GL085870  |2 doi 
028 5 2 |a pubmed24n1354.xml 
035 |a (DE-627)NLM312898479 
035 |a (NLM)32713978 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rouet-Leduc, Bertrand  |e verfasserin  |4 aut 
245 1 0 |a Probing Slow Earthquakes With Deep Learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a ©2020. The Authors. 
520 |a Slow earthquakes may trigger failure on neighboring locked faults that are stressed sufficiently to break, and slow slip patterns may evolve before a nearby great earthquake. However, even in the clearest cases such as Cascadia, slow earthquakes and associated tremor have only been observed in intermittent and discrete bursts. By training a convolutional neural network to detect known tremor on a single seismic station in Cascadia, we isolate and identify tremor and slip preceding and following known larger slow events. The deep neural network can be used for the detection of quasi-continuous tremor, providing a proxy that quantifies the slow slip rate. Furthermore, the model trained in Cascadia recognizes tremor in other subduction zones and also along the San Andreas Fault at Parkfield, suggesting a universality of waveform characteristics and source processes, as posited from experiments and theory 
650 4 |a Journal Article 
650 4 |a Cascadia 
650 4 |a deep learning 
650 4 |a machine learning 
650 4 |a slow earthquakes 
650 4 |a tectonic tremor 
700 1 |a Hulbert, Claudia  |e verfasserin  |4 aut 
700 1 |a McBrearty, Ian W  |e verfasserin  |4 aut 
700 1 |a Johnson, Paul A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Geophysical research letters  |d 1984  |g 47(2020), 4 vom: 28. Feb., Seite e2019GL085870  |w (DE-627)NLM098182501  |x 0094-8276  |7 nnns 
773 1 8 |g volume:47  |g year:2020  |g number:4  |g day:28  |g month:02  |g pages:e2019GL085870 
856 4 0 |u http://dx.doi.org/10.1029/2019GL085870  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 4  |b 28  |c 02  |h e2019GL085870