Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano

© 2020. The Authors.

Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters. - 1984. - 47(2020), 3 vom: 16. Feb., Seite e2019GL085523
1. Verfasser: Ren, C X (VerfasserIn)
Weitere Verfasser: Peltier, A, Ferrazzini, V, Rouet-Leduc, B, Johnson, P A, Brenguier, F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Geophysical research letters
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM312898444
003 DE-627
005 20240329233738.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1029/2019GL085523  |2 doi 
028 5 2 |a pubmed24n1354.xml 
035 |a (DE-627)NLM312898444 
035 |a (NLM)32713974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, C X  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning Reveals the Seismic Signature of Eruptive Behavior at Piton de la Fournaise Volcano 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020. The Authors. 
520 |a Volcanic tremor is key to our understanding of active magmatic systems, but due to its complexity, there is still a debate concerning its origins and how it can be used to characterize eruptive dynamics. In this study we leverage machine learning techniques using 6 years of continuous seismic data from the Piton de la Fournaise volcano (La Réunion island) to describe specific patterns of seismic signals recorded during eruptions. These results unveil what we interpret as signals associated with various eruptive dynamics of the volcano, including the effusion of a large volume of lava during the August-October 2015 eruption as well as the closing of the eruptive vent during the September-November 2018 eruption. The machine learning workflow we describe can easily be applied to other active volcanoes, potentially leading to an enhanced understanding of the temporal and spatial evolution of volcanic eruptions 
650 4 |a Journal Article 
700 1 |a Peltier, A  |e verfasserin  |4 aut 
700 1 |a Ferrazzini, V  |e verfasserin  |4 aut 
700 1 |a Rouet-Leduc, B  |e verfasserin  |4 aut 
700 1 |a Johnson, P A  |e verfasserin  |4 aut 
700 1 |a Brenguier, F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Geophysical research letters  |d 1984  |g 47(2020), 3 vom: 16. Feb., Seite e2019GL085523  |w (DE-627)NLM098182501  |x 0094-8276  |7 nnns 
773 1 8 |g volume:47  |g year:2020  |g number:3  |g day:16  |g month:02  |g pages:e2019GL085523 
856 4 0 |u http://dx.doi.org/10.1029/2019GL085523  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2020  |e 3  |b 16  |c 02  |h e2019GL085523