Dormancy cycling is accompanied by changes in ABA sensitivity in Polygonum aviculare seeds
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 71(2020), 19 vom: 07. Okt., Seite 5924-5934 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Polygonum aviculare Abscisic acid dormancy cycling gibberellins hormonal mechanisms primary dormancy secondary dormancy seed dormancy mehr... |
Zusammenfassung: | © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. Polygonum aviculare seeds show high levels of primary dormancy (PD). Low winter temperatures alleviate dormancy and high spring temperatures induce seeds into secondary dormancy (SD), naturally establishing stable seedbanks cycling through years. The objective of this work was to elucidate the mechanism(s) involved in PD expression and release, and in SD induction in these seeds, and the extent to which abscisic acid (ABA) and gibberellins (GAs) are part of these mechanisms. Quantification of endogenous ABA both prior to and during incubation, and sensitivity to ABA and GAs, were assessed in seeds with contrasting dormancy. Expression analysis was performed for candidate genes involved in hormone metabolism and signaling. It was found that endogenous ABA content does not explain either dormancy release or dormancy induction; moreover, it does not seem to play a role in dormancy maintenance. However, dormancy modifications were commonly accompanied by changes in ABA sensitivity. Concomitantly, induction into SD, but not PD, was characterized by a increased PaABI-5 and PaPYL transcription, and a rise in GA sensitivity as a possible counterbalance effect. These results suggest that dormancy cycling in this species is related to changes in embryo sensitivity to ABA; however, this sensitivity appears to be controlled by different molecular mechanisms in primary and secondary dormant seeds |
---|---|
Beschreibung: | Date Completed 14.05.2021 Date Revised 14.05.2021 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/eraa340 |