Powdery Mildew Caused by Erysiphe sedi on Crassula capitella in China

Crassula capitella Thunb. is a succulent used ornamentally in gardens and landscapes. In August 2019, severe powdery mildew infection was observed on C. capitella in a plant nursery, 1000m2 in area, in Xining (36°42'44.39" N, 101°44'50.50″E, alt. 2330 m), China. Approximately 35% of t...

Description complète

Détails bibliographiques
Publié dans:Plant disease. - 1997. - (2020) vom: 24. Juli
Auteur principal: He, Qinen (Auteur)
Autres auteurs: Li, Qiangfeng, Bai, Luchao, Man, Liting, Zhao, Wenjie, Luo, Xupeng, Bao, Shancun
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:Plant disease
Sujets:Journal Article China Crassula capitella Erysiphe sedi Powdery Mildew
LEADER 01000caa a22002652c 4500
001 NLM312823061
003 DE-627
005 20250227160340.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-06-20-1334-PDN  |2 doi 
028 5 2 |a pubmed25n1042.xml 
035 |a (DE-627)NLM312823061 
035 |a (NLM)32706322 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Qinen  |e verfasserin  |4 aut 
245 1 0 |a Powdery Mildew Caused by Erysiphe sedi on Crassula capitella in China 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Crassula capitella Thunb. is a succulent used ornamentally in gardens and landscapes. In August 2019, severe powdery mildew infection was observed on C. capitella in a plant nursery, 1000m2 in area, in Xining (36°42'44.39" N, 101°44'50.50″E, alt. 2330 m), China. Approximately 35% of the leaves on a plant were symptomatic, and 80% of the plants were affected. The disease seriously reduced the ornamental value. A voucher specimen was deposited in the Herbarium of Plant Pathology at Qinghai University under accession no. QHU2019150. The pathogen formed superficial mycelia on leaves and stems producing conspicuous white colonies followed by necrosis of the leaf tissues and defoliation. Mycelia were amphigenous, white, effuse or in patches, persistent with lobed appressoria. The pathogen produced conidia singly on 2- to 3-celled conidiophores occurring on the ectophytic hyphae. Conidia were subcylindrical, measured 22 to 41 × 10 to 16 (n = 50) µm, and were produced singly on the tip of conidiophores. Conidiophores were erect and up to 110 µm long, foot-cells straight, cylindrical and 22 to 53 × 8 to 10 (n = 50) µm, followed by one to three shorter cells. Chasmothecia were not found. The fungus was identified as Erysiphe sedi based on morphology (Braun and Cook 2012). To confirm the identification, the ITS region was amplified. The ITS5/P3 and PM5/ITS4 primers were used to amplify the ITS region by nested PCR, and the cloned fragments were sequenced (Takamatsu and Kano 2001). The aligned ITS region sequences were deposited in GenBank (accession no. MT178769). A BLAST search analysis of the two sequences revealed 99.84% identity with E. sedi infecting Sedum aizoon in Russia (LC010045). A phylogenetic tree was constructed in MEGA6 with 15 ITS sequences using the neighbor-joining method with the Kimura 2-parameter substitution model. The sequence retrieved from powdery mildew on Crassula capitella in China clustered together with the sequences obtained from E. sedi on Sedum spp. with nearly 100 % concordance, placing it in the Erysiphe aquilegiae complex as defined by Takamatsu et al. (2015) and recently critically discussed by Shin et al. (2019). This complex comprises numerous Erysiphe spp. insufficiently resolved, especially when based only on ITS data. However, for the time being we follow Götz et al. (2019) and recognize E. sedi as a species of its own and identify the Chinese collection on Crassula capitella as E. sedi because of the morphological agreement and concordant ITS data. Pathogenicity tests were completed by gently pressing infected leaves onto five healthy leaves of C. capitella, Inoculated and non-inoculated plants were maintained separately in different rooms of a greenhouse at 22 to 25°C. Inoculated plants developed signs and symptoms after 12 days, whereas control plants remained symptomless. The morphology of the fungus on inoculated leaves was identical to that originally observed on diseased plants. To our knowledge, this is the first report of powdery mildew caused by Erysiphe sedi on C. capitella in China and worldwide, although E. sedi is reported to infect many Crassulaceous or Crassulaceae hosts (Cho et al. 2012, Götz et al. 2019) 
650 4 |a Journal Article 
650 4 |a China 
650 4 |a Crassula capitella 
650 4 |a Erysiphe sedi 
650 4 |a Powdery Mildew 
700 1 |a Li, Qiangfeng  |e verfasserin  |4 aut 
700 1 |a Bai, Luchao  |e verfasserin  |4 aut 
700 1 |a Man, Liting  |e verfasserin  |4 aut 
700 1 |a Zhao, Wenjie  |e verfasserin  |4 aut 
700 1 |a Luo, Xupeng  |e verfasserin  |4 aut 
700 1 |a Bao, Shancun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g (2020) vom: 24. Juli  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnas 
773 1 8 |g year:2020  |g day:24  |g month:07 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-06-20-1334-PDN  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2020  |b 24  |c 07