|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM312727011 |
003 |
DE-627 |
005 |
20231225145033.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202002875
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1042.xml
|
035 |
|
|
|a (DE-627)NLM312727011
|
035 |
|
|
|a (NLM)32696515
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lin, Yu-Ting
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Simultaneous Piezoelectrocatalytic Hydrogen-Evolution and Degradation of Water Pollutants by Quartz MicrorodsFew-Layered MoS2 Hierarchical Heterostructures
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Intense light attenuation in water/wastewater results in photocatalysts exhibiting a low quantum efficiency. This study develops a novel piezoelectrocatalysis system, which involves quartz microrods (MRs) abundantly decorated with active-edge-site MoS2 nanosheets to form a quartz microrodsfew-layered MoS2 hierarchical heterostructure (QMSH). Through theoretical calculations, it is found that the quartz MRs serve as a parallel-plate capacitor, which is self-powered to provide an internal electric field to the few-layered MoS2 nanosheets surrounding the quartz MR surfaces, and the piezoelectric potential (piezopotential) effectively facilitates redox reactions with the free carriers in MoS2 . The self-powered quartz MRs in the QMSH present an internal bias to the MoS2 nanosheets, thus yielding a piezoelectrocatalysis system. An efficient piezoelectrocatalytic hydrogen evolution reaction and decomposition of wastewater without light irradiation can be achieved simultaneously. The second-order rate constant of the QMSH is ≈0.631 L mg-1 min-1 , which is 650-fold that of quartz MRs, indicating that the piezoelectric heterostructural catalysts display exceptionally high efficiency on piezoelectrocatalytic redox reactions rather than in the piezocatalytic process. The H2 -production rate of QMSH catalysts approaches ≈6456 µmo1 g-1 h-1 and peaks at ≈16.8 mmol g-1 in 8 h. The piezoelectrocatalytic process may be a promising method for treating industrial wastewater and producing clean energy
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a hierarchical heterostructures
|
650 |
|
4 |
|a molybdenum disulfide
|
650 |
|
4 |
|a piezoelectrocatalysis
|
650 |
|
4 |
|a quartz
|
650 |
|
4 |
|a redox reactions
|
650 |
|
4 |
|a wastewater
|
700 |
1 |
|
|a Lai, Sz-Nian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Jyh Ming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 34 vom: 01. Aug., Seite e2002875
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:34
|g day:01
|g month:08
|g pages:e2002875
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202002875
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 34
|b 01
|c 08
|h e2002875
|