Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap

Coalescence of micrometer-scale droplets is impacted by several parameters, including droplet size, viscosities of the two phases, droplet velocity, angle of approach, as well as interfacial tension and surfactant coverage. The thinning dynamics of films between coalescing droplets can be particular...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 33 vom: 25. Aug., Seite 9827-9842
1. Verfasser: Narayan, Shweta (VerfasserIn)
Weitere Verfasser: Makhnenko, Iaroslav, Moravec, Davis B, Hauser, Brad G, Dallas, Andrew J, Dutcher, Cari S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM312698267
003 DE-627
005 20231225144956.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c01414  |2 doi 
028 5 2 |a pubmed24n1042.xml 
035 |a (DE-627)NLM312698267 
035 |a (NLM)32693603 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Narayan, Shweta  |e verfasserin  |4 aut 
245 1 0 |a Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.02.2022 
500 |a published: Print-Electronic 
500 |a ErratumIn: Langmuir. 2022 Mar 1;38(8):2749-2750. - PMID 35157799 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Coalescence of micrometer-scale droplets is impacted by several parameters, including droplet size, viscosities of the two phases, droplet velocity, angle of approach, as well as interfacial tension and surfactant coverage. The thinning dynamics of films between coalescing droplets can be particularly complex in the presence of surfactants, due to the generation of Marangoni stresses and reduced film mobility. Here, a microfluidic hydrodynamic "Stokes" trap is used to gently steer and trap surfactant-laden micrometer-sized droplets at the center of a cross-slot. Water droplets are formed upstream of the cross-slot using a microfluidic T-junction, in heavy and light mineral oils and stabilized using SPAN 80, an oil-soluble surfactant. Incoming droplets are made to coalesce with the trapped droplet, yielding measurements of the film drainage time. Film drainage times are measured as a function of continuous phase viscosity, incoming droplet speed, trapped droplet size, and surfactant concentrations above and below the critical micelle concentration (CMC). As expected, systems with higher surfactant concentrations and slower incoming droplet speed exhibit longer film drainage times. At low surfactant concentrations, the drainage time is longer for the more viscous heavy mineral oil in the continuous phase, whereas at high surfactant concentrations, the dependence on continuous phase viscosity vanishes. Perhaps more surprisingly, larger droplets and high confinement also result in longer film drainage times, potentially due to deformation of the droplet interfaces. The results are used here to determine critical conditions for coalescence, including both an upper and a lower critical capillary number. Moreover, it is shown that induced surfactant concentration gradient effects enable coalescence events after the droplets had originally flocculated, at surfactant concentrations above the CMC. The microfluidic hydrodynamic trap provides new insights into the role of surfactants in film drainage and opens avenues for controlled coalescence studies at micrometer length scales and millisecond time scales 
650 4 |a Journal Article 
700 1 |a Makhnenko, Iaroslav  |e verfasserin  |4 aut 
700 1 |a Moravec, Davis B  |e verfasserin  |4 aut 
700 1 |a Hauser, Brad G  |e verfasserin  |4 aut 
700 1 |a Dallas, Andrew J  |e verfasserin  |4 aut 
700 1 |a Dutcher, Cari S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 36(2020), 33 vom: 25. Aug., Seite 9827-9842  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:36  |g year:2020  |g number:33  |g day:25  |g month:08  |g pages:9827-9842 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c01414  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 36  |j 2020  |e 33  |b 25  |c 08  |h 9827-9842