Nitric oxide, other reactive signalling compounds, redox, and reductive stress

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 3 vom: 11. Feb., Seite 819-829
1. Verfasser: Hancock, John T (VerfasserIn)
Weitere Verfasser: Veal, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Glutathione NAD(P)H hydrogen peroxide hydrogen sulfide nitric oxide reactive oxygen species redox reductive stress mehr... Reactive Nitrogen Species Reactive Oxygen Species Nitric Oxide 31C4KY9ESH Hydrogen Peroxide BBX060AN9V
Beschreibung
Zusammenfassung:© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Nitric oxide (NO) and other reactive nitrogen species (RNS) are key signalling molecules in plants, but they do not work in isolation. NO is produced in cells, often increased in response to stress conditions, but many other reactive compounds used in signalling are generated and accumulate spatially and temporally together. This includes the reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), and hydrogen sulfide (H2S). Here, the interactions with such other reactive molecules is briefly reviewed. Furthermore, along with ROS and H2S, NO will potentially contribute to the overall intracellular redox of the cell. However, RNS will exist in redox couples and therefore the influence of the cellular redox on such couples will be explored. In discussions of the aberrations in intracellular redox it is usually oxidation, so-called oxidative stress, which is discussed. Here, we consider the notion of reductive stress and how this may influence the signalling which may be mediated by NO. By getting a more holistic view of NO biology, the influence on cell activity of NO and other RNS can be more fully understood, and may lead to the elucidation of methods for NO-based manipulation of plant physiology, leading to better stress responses and improved crops in the future
Beschreibung:Date Completed 20.05.2021
Date Revised 20.05.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/eraa331