Pattern-matching indexing of Laue and monochromatic serial crystallography data for applications in materials science

© International Union of Crystallography 2020.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 53(2020), Pt 3 vom: 01. Juni, Seite 824-836
1. Verfasser: Dejoie, Catherine (VerfasserIn)
Weitere Verfasser: Tamura, Nobumichi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article Laue microdiffraction energy bandpass indexing pattern matching serial crystallography
LEADER 01000naa a22002652 4500
001 NLM312612206
003 DE-627
005 20231225144806.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1107/S160057672000521X  |2 doi 
028 5 2 |a pubmed24n1042.xml 
035 |a (DE-627)NLM312612206 
035 |a (NLM)32684897 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dejoie, Catherine  |e verfasserin  |4 aut 
245 1 0 |a Pattern-matching indexing of Laue and monochromatic serial crystallography data for applications in materials science 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.11.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © International Union of Crystallography 2020. 
520 |a Serial crystallography data can be challenging to index, as each frame is processed individually, rather than being processed as a whole like in conventional X-ray single-crystal crystallography. An algorithm has been developed to index still diffraction patterns arising from small-unit-cell samples. The algorithm is based on the matching of reciprocal-lattice vector pairs, as developed for Laue microdiffraction data indexing, combined with three-dimensional pattern matching using a nearest-neighbors approach. As a result, large-bandpass data (e.g. 5-24 keV energy range) and monochromatic data can be processed, the main requirement being prior knowledge of the unit cell. Angles calculated in the vicinity of a few theoretical and experimental reciprocal-lattice vectors are compared, and only vectors with the highest number of common angles are selected as candidates to obtain the orientation matrix. Global matching on the entire pattern is then checked. Four indexing options are available, two for the ranking of the theoretical reciprocal-lattice vectors and two for reducing the number of possible candidates. The algorithm has been used to index several data sets collected under different experimental conditions on a series of model samples. Knowing the crystallographic structure of the sample and using this information to rank the theoretical reflections based on the structure factors helps the indexing of large-bandpass data for the largest-unit-cell samples. For small-bandpass data, shortening the candidate list to determine the orientation matrix should be based on matching pairs of reciprocal-lattice vectors instead of triplet matching 
650 4 |a Journal Article 
650 4 |a Laue microdiffraction 
650 4 |a energy bandpass 
650 4 |a indexing 
650 4 |a pattern matching 
650 4 |a serial crystallography 
700 1 |a Tamura, Nobumichi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 53(2020), Pt 3 vom: 01. Juni, Seite 824-836  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:53  |g year:2020  |g number:Pt 3  |g day:01  |g month:06  |g pages:824-836 
856 4 0 |u http://dx.doi.org/10.1107/S160057672000521X  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 53  |j 2020  |e Pt 3  |b 01  |c 06  |h 824-836