Integration of PEGylated Polyaniline Nanocoatings with Multiple Plastic Substrates Generates Comparable Antifouling Performance
Conducting polymer nanocoatings render plastics to possess interesting optical, chemical, and electrical properties. It nevertheless remains technically challenging to deposit uniform conducting polymer nanocoatings on ambient plastic substrates ascribed to the inert and varied chemical properties o...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 31 vom: 11. Aug., Seite 9114-9123 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Conducting polymer nanocoatings render plastics to possess interesting optical, chemical, and electrical properties. It nevertheless remains technically challenging to deposit uniform conducting polymer nanocoatings on ambient plastic substrates ascribed to the inert and varied chemical properties of plastics and the notorious processability of conducting polymers. Previous studies have made progress in delivering various conducting polymer thin films via oxidative chemical vapor deposition. Herein, we develop a solution-based approach to polyaniline (PANI) and PEGylated PANI nanocoatings on multiple engineering plastics followed by evaluating their antifouling performance. The procedure relies on the formation of uniform, lyotropic V2O5·nH2O thin films on plastics assisted by a surfactant-sodium N-lauroylsarcosinate. Next, in situ, oxidative polymerization causes the formation of nanofibrous PANI nanocoatings. Finally, interfacial functionalization leads to PEGylated PANI nanocoatings, and the steric nanolayer effectively repels the adsorption of bovine serum albumin and the attachment of the bacterium Pseudoalteromonas sp. on the surface. It is worth noting that the antifouling properties rely mainly on the presence of PEGylated PANI nanocoatings, irrespective of the type of plastic substrates underneath. The current study therefore opens an avenue for the solution-based delivery of conducting polymer-based, functional nanocoatings on hydrophobic substrates in a controllable manner with the availability of further modification |
---|---|
Beschreibung: | Date Completed 22.09.2020 Date Revised 22.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c01223 |