Brachialactone isomers and derivatives of Brachiaria humidicola reveal contrasting nitrification inhibiting activity

Copyright © 2020. Published by Elsevier Masson SAS.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 154(2020) vom: 01. Sept., Seite 491-497
1. Verfasser: Egenolf, Konrad (VerfasserIn)
Weitere Verfasser: Conrad, Jürgen, Schöne, Jochen, Braunberger, Christina, Beifuß, Uwe, Walker, Frank, Nuñez, Jonathan, Arango, Jacobo, Karwat, Hannes, Cadisch, Georg, Neumann, Günter, Rasche, Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article BNI (Biological nitrification inhibition) Brachiaria humidicola Forages Fusicoccanes Nitrosomonas europaea Poaceae Tropical savannas Lactones Plant Exudates
Beschreibung
Zusammenfassung:Copyright © 2020. Published by Elsevier Masson SAS.
Biological Nitrification Inhibition (BNI) of Brachiaria humidicola has been mainly attributed to the root-exuded fusicoccane-type diterpene brachialactone. We hypothesized, however, that according to the high diversity of fusicoccanes described for plants and microorganisms, BNI of B. humidicola is caused by an assemblage of bioactive fusicoccanes. B. humidicola root exudates were collected hydroponically and compounds isolated by semi-preparative HPLC. Chemical structures were revealed by spectroscopic techniques, including HRMS as well as 1D and 2D NMR. Nitrification inhibiting (NI) potential of isolated compounds was evaluated by a Nitrosomonas europaea based bioassay. Besides the previously described brachialactone (1), root exudates contained 3-epi-brachialactone (2), the C3-epimer of 1 (m/z 334), as well as 16-hydroxy-3-epi-brachialactone (3) with an additional hydroxyl group at C16 (m/z 350) and 3,18-epoxy-9-hydroxy-4,7-seco-brachialactone (4), which is a ring opened brachialactone derivative with a 3,18 epoxide ring and a hydroxyl group at C9 (m/z 332). The 3-epi-brachialactone (2) showed highest NI activity (ED50 ~ 20 μg mL-1, ED80 ~ 40 μg mL-1), followed by compound 4 with intermediate (ED50 ~ 40 μg mL-1), brachialactone (1) with low and compound 3 without activity. In coherence with previous reports on fusicoccanes, stereochemistry at C3 was of high relevance for the biological activity (NI potential) of brachialactones
Beschreibung:Date Completed 10.12.2020
Date Revised 14.12.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2020.06.004