Biological Characteristics and Molecular Mechanisms of Fludioxonil Resistance in Fusarium graminearum in China

Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB) of wheat. The phenylpyrrole fungicide fludioxonil is not currently registered for the management of FHB in China. The current study assessed the fludioxonil sensitivity of a total of 53 F. graminearum isolates collected f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 104(2020), 9 vom: 01. Sept., Seite 2426-2433
1. Verfasser: Zhou, F (VerfasserIn)
Weitere Verfasser: Li, D X, Hu, H Y, Song, Y L, Fan, Y C, Guan, Y Y, Song, P W, Wei, Q C, Yan, H F, Li, C W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Fusarium graminearum biological characteristics cross resistance fludioxonil resistance mechanism Dioxoles Pyrroles ENS9J0YM16
LEADER 01000naa a22002652 4500
001 NLM312352875
003 DE-627
005 20231225144232.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-01-20-0079-RE  |2 doi 
028 5 2 |a pubmed24n1041.xml 
035 |a (DE-627)NLM312352875 
035 |a (NLM)32658633 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, F  |e verfasserin  |4 aut 
245 1 0 |a Biological Characteristics and Molecular Mechanisms of Fludioxonil Resistance in Fusarium graminearum in China 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.08.2020 
500 |a Date Revised 28.08.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB) of wheat. The phenylpyrrole fungicide fludioxonil is not currently registered for the management of FHB in China. The current study assessed the fludioxonil sensitivity of a total of 53 F. graminearum isolates collected from the six most important wheat-growing provinces of China during 2018 and 2019. The baseline fludioxonil sensitivity distribution indicated that all of the isolates were sensitive, exhibiting a unimodal cure with a mean effective concentration for 50% inhibition value of 0.13 ± 0.12 μg/ml (standard deviation). Five fludioxonil-resistant mutants were subsequently induced by exposure to fludioxonil under laboratory conditions. Ten successive rounds of subculture in the absence of the selection pressure indicated that the mutation was stably inherited. However, the fludioxonil-resistant mutants were found to have reduced pathogenicity, higher glycerol accumulation, and higher osmotic sensitivity than the parental wild-type isolates, indicating that there was a fitness cost associated with fludioxonil resistance. In addition, the study also found a positive cross resistance between fludioxonil, procymidone, and iprodione, but not with other fungicides such as boscalid, carbendazim, tebuconazole, and fluazinam. Sequence analysis of four candidate target genes (FgOs1, FgOs2, FgOs4, and FgOs5) revealed that the HBXT2R mutant contained two point mutations that resulted in amino acid changes at K223T and K415R in its FgOs1 protein, and one point mutation at residue 520 of its FgOs5 protein that resulted in a premature stop codon. Similarly, the three other mutants contained point mutations that resulted in changes at the K192R, K293R, and K411R residues of the FgOs5 protein but none in the FgOs2 and FgOs4 genes. However, it is important to point out that the FgOs2 and FgOs4 expression of all the fludioxonil-resistant mutants was significantly (P < 0.05) downregulated compared with the sensitive isolates (except for the SQ1-2 isolate). It was also found that one of the resistant mutants did not have changes in any of the sequenced target genes, indicating that an alternative mechanism could also lead to fludioxonil resistance 
650 4 |a Journal Article 
650 4 |a Fusarium graminearum 
650 4 |a biological characteristics 
650 4 |a cross resistance 
650 4 |a fludioxonil 
650 4 |a resistance mechanism 
650 7 |a Dioxoles  |2 NLM 
650 7 |a Pyrroles  |2 NLM 
650 7 |a fludioxonil  |2 NLM 
650 7 |a ENS9J0YM16  |2 NLM 
700 1 |a Li, D X  |e verfasserin  |4 aut 
700 1 |a Hu, H Y  |e verfasserin  |4 aut 
700 1 |a Song, Y L  |e verfasserin  |4 aut 
700 1 |a Fan, Y C  |e verfasserin  |4 aut 
700 1 |a Guan, Y Y  |e verfasserin  |4 aut 
700 1 |a Song, P W  |e verfasserin  |4 aut 
700 1 |a Wei, Q C  |e verfasserin  |4 aut 
700 1 |a Yan, H F  |e verfasserin  |4 aut 
700 1 |a Li, C W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 104(2020), 9 vom: 01. Sept., Seite 2426-2433  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g volume:104  |g year:2020  |g number:9  |g day:01  |g month:09  |g pages:2426-2433 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-01-20-0079-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 104  |j 2020  |e 9  |b 01  |c 09  |h 2426-2433