|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM312335679 |
003 |
DE-627 |
005 |
20231225144210.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202001944
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1041.xml
|
035 |
|
|
|a (DE-627)NLM312335679
|
035 |
|
|
|a (NLM)32656860
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hwang, Jaeseong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Li- and Mn-rich layered oxides (LMRs) have emerged as practically feasible cathode materials for high-energy-density Li-ion batteries due to their extra anionic redox behavior and market competitiveness. However, sluggish kinetics regions (<3.5 V vs Li/Li+ ) associated with anionic redox chemistry engender LMRs with chemical irreversibility (first-cycle irreversibility, poor rate properties, voltage fading), which limits their practical use. Herein, the structural origin of this chemical irreversibility is revealed through a comparative study involving Li1.15 Mn0.51 Co0.17 Ni0.17 O2 with relatively localized and delocalized excess-Li in its lattice system. Operando fine-interval X-ray absorption spectroscopy is used to simultaneously observe the interplay between transition-metal-oxygen (TM-O) redox chemistry and TM migration behavior in real time. Density functional theory calculations show that excess-Li localization in the LMR structure attenuates TM-O covalency and stability, leading to overall chemical irreversibility. Hence, the delocalized excess-Li system is proposed as an alternative design for practically feasible LMR cathodes with restrained TM migration and sustainable O-redox chemistry
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Li- and Mn-rich layered oxide
|
650 |
|
4 |
|a chemical irreversibility
|
650 |
|
4 |
|a excess-Li localization
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a oxygen stability
|
700 |
1 |
|
|a Myeong, Seungjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Wooyoung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jang, Haeseong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nam, Gyutae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yoon, Moonsu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Su Hwan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Joo, Se Hun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kwak, Sang Kyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Min Gyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cho, Jaephil
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 34 vom: 05. Aug., Seite e2001944
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:34
|g day:05
|g month:08
|g pages:e2001944
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202001944
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 34
|b 05
|c 08
|h e2001944
|