Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 34 vom: 05. Aug., Seite e2001944
1. Verfasser: Hwang, Jaeseong (VerfasserIn)
Weitere Verfasser: Myeong, Seungjun, Jin, Wooyoung, Jang, Haeseong, Nam, Gyutae, Yoon, Moonsu, Kim, Su Hwan, Joo, Se Hun, Kwak, Sang Kyu, Kim, Min Gyu, Cho, Jaephil
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li- and Mn-rich layered oxide chemical irreversibility excess-Li localization lithium-ion batteries oxygen stability
LEADER 01000naa a22002652 4500
001 NLM312335679
003 DE-627
005 20231225144210.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202001944  |2 doi 
028 5 2 |a pubmed24n1041.xml 
035 |a (DE-627)NLM312335679 
035 |a (NLM)32656860 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hwang, Jaeseong  |e verfasserin  |4 aut 
245 1 0 |a Excess-Li Localization Triggers Chemical Irreversibility in Li- and Mn-Rich Layered Oxides 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Li- and Mn-rich layered oxides (LMRs) have emerged as practically feasible cathode materials for high-energy-density Li-ion batteries due to their extra anionic redox behavior and market competitiveness. However, sluggish kinetics regions (<3.5 V vs Li/Li+ ) associated with anionic redox chemistry engender LMRs with chemical irreversibility (first-cycle irreversibility, poor rate properties, voltage fading), which limits their practical use. Herein, the structural origin of this chemical irreversibility is revealed through a comparative study involving Li1.15 Mn0.51 Co0.17 Ni0.17 O2 with relatively localized and delocalized excess-Li in its lattice system. Operando fine-interval X-ray absorption spectroscopy is used to simultaneously observe the interplay between transition-metal-oxygen (TM-O) redox chemistry and TM migration behavior in real time. Density functional theory calculations show that excess-Li localization in the LMR structure attenuates TM-O covalency and stability, leading to overall chemical irreversibility. Hence, the delocalized excess-Li system is proposed as an alternative design for practically feasible LMR cathodes with restrained TM migration and sustainable O-redox chemistry 
650 4 |a Journal Article 
650 4 |a Li- and Mn-rich layered oxide 
650 4 |a chemical irreversibility 
650 4 |a excess-Li localization 
650 4 |a lithium-ion batteries 
650 4 |a oxygen stability 
700 1 |a Myeong, Seungjun  |e verfasserin  |4 aut 
700 1 |a Jin, Wooyoung  |e verfasserin  |4 aut 
700 1 |a Jang, Haeseong  |e verfasserin  |4 aut 
700 1 |a Nam, Gyutae  |e verfasserin  |4 aut 
700 1 |a Yoon, Moonsu  |e verfasserin  |4 aut 
700 1 |a Kim, Su Hwan  |e verfasserin  |4 aut 
700 1 |a Joo, Se Hun  |e verfasserin  |4 aut 
700 1 |a Kwak, Sang Kyu  |e verfasserin  |4 aut 
700 1 |a Kim, Min Gyu  |e verfasserin  |4 aut 
700 1 |a Cho, Jaephil  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 32(2020), 34 vom: 05. Aug., Seite e2001944  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:32  |g year:2020  |g number:34  |g day:05  |g month:08  |g pages:e2001944 
856 4 0 |u http://dx.doi.org/10.1002/adma.202001944  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2020  |e 34  |b 05  |c 08  |h e2001944