An autonomous operational trajectory searching system for an economic and environmental membrane bioreactor plant using deep reinforcement learning

Optimal operation of membrane bioreactor (MBR) plants is crucial to save operational costs while satisfying legal effluent discharge requirements. The aeration process of MBR plants tends to use excessive energy for supplying air to micro-organisms. In the present study, a novel optimal aeration sys...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 81(2020), 8 vom: 09. Apr., Seite 1578-1587
1. Verfasser: Nam, KiJeon (VerfasserIn)
Weitere Verfasser: Heo, SungKu, Loy-Benitez, Jorge, Ifaei, Pouya, Yoo, ChangKyoo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Membranes, Artificial
LEADER 01000caa a22002652c 4500
001 NLM31221765X
003 DE-627
005 20250227135708.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2020.053  |2 doi 
028 5 2 |a pubmed25n1040.xml 
035 |a (DE-627)NLM31221765X 
035 |a (NLM)32644951 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nam, KiJeon  |e verfasserin  |4 aut 
245 1 3 |a An autonomous operational trajectory searching system for an economic and environmental membrane bioreactor plant using deep reinforcement learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.07.2020 
500 |a Date Revised 15.12.2020 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Optimal operation of membrane bioreactor (MBR) plants is crucial to save operational costs while satisfying legal effluent discharge requirements. The aeration process of MBR plants tends to use excessive energy for supplying air to micro-organisms. In the present study, a novel optimal aeration system is proposed for dynamic and robust optimization. Accordingly, a deep reinforcement learning (DRL)-based optimal operating system is proposed, so as to meet stringent discharge qualities while maximizing the system's energy efficiency. Additionally, it is compared with the manual system and conventional reinforcement learning (RL)-based systems. A deep Q-network (DQN) algorithm automatically learns how to operate the plant efficiently by finding an optimal trajectory to reduce the aeration energy without degrading the treated water quality. A full-scale MBR plant with the DQN-based autonomous aeration system can decrease the MBR's aeration energy consumption by 34% compared to other aeration systems while maintaining the treatment efficiency within effluent discharge limits 
650 4 |a Journal Article 
650 7 |a Membranes, Artificial  |2 NLM 
700 1 |a Heo, SungKu  |e verfasserin  |4 aut 
700 1 |a Loy-Benitez, Jorge  |e verfasserin  |4 aut 
700 1 |a Ifaei, Pouya  |e verfasserin  |4 aut 
700 1 |a Yoo, ChangKyoo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 81(2020), 8 vom: 09. Apr., Seite 1578-1587  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:81  |g year:2020  |g number:8  |g day:09  |g month:04  |g pages:1578-1587 
856 4 0 |u http://dx.doi.org/10.2166/wst.2020.053  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 81  |j 2020  |e 8  |b 09  |c 04  |h 1578-1587