Identification of behavioural model input data sets for WWTP uncertainty analysis
Uncertainty analysis is important for wastewater treatment plant (WWTP) model applications. An important aspect of uncertainty analysis is the identification and proper quantification of sources of uncertainty. In this contribution, a methodology to identify an ensemble of behavioural model represen...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 81(2020), 8 vom: 09. Apr., Seite 1558-1568 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Waste Water |
Zusammenfassung: | Uncertainty analysis is important for wastewater treatment plant (WWTP) model applications. An important aspect of uncertainty analysis is the identification and proper quantification of sources of uncertainty. In this contribution, a methodology to identify an ensemble of behavioural model representations (combinations of input data, model structure and parameter values) is presented and evaluated. The outcome is a multivariate conditional distribution of input data that is used for generating samples of likely inputs (such as Monte Carlo input samples) to perform WWTP model uncertainty analysis. This article presents an approach to verify uncertainty distributions of input data (otherwise often assumed) by using historical observations and actual plant data |
---|---|
Beschreibung: | Date Completed 13.07.2020 Date Revised 07.12.2022 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2019.427 |