|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM31216405X |
003 |
DE-627 |
005 |
20231225143825.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202003021
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1040.xml
|
035 |
|
|
|a (DE-627)NLM31216405X
|
035 |
|
|
|a (NLM)32639067
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hao, Junnan
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Although Zn metal has been regarded as the most promising anode for aqueous batteries, it persistently suffers from serious side reactions and dendrite growth in mild electrolyte. Spontaneous Zn corrosion and hydrogen evolution damage the shelf life and calendar life of Zn-based batteries, severely affecting their industrial applications. Herein, a robust and homogeneous ZnS interphase is built in situ on the Zn surface by a vapor-solid strategy to enhance Zn reversibility. The thickness of the ZnS film is controlled via the treatment temperature, and the performance of the protected Zn electrode is optimized. The dense ZnS artificial layer obtained at 350 °C not only suppresses Zn corrosion by forming a physical barrier on the Zn surface, but also inhibits dendrite growth via guiding the Zn plating/stripping underneath the artificial layer. Accordingly, a side reaction-free and dendrite-free Zn electrode is developed, the effectiveness of which is also convincing in a MnO2 /ZnSZn full-cell with 87.6% capacity retention after 2500 cycles
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a DFT calculation
|
650 |
|
4 |
|a Zn anode protection
|
650 |
|
4 |
|a Zn ion batteries
|
650 |
|
4 |
|a in situ strategies
|
650 |
|
4 |
|a side reactions
|
700 |
1 |
|
|a Li, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xiaolong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zeng, Xiaohui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Shilin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Fuhua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Sailin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Dan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Chao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Zaiping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 34 vom: 07. Aug., Seite e2003021
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:34
|g day:07
|g month:08
|g pages:e2003021
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202003021
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 34
|b 07
|c 08
|h e2003021
|