High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 33 vom: 07. Aug., Seite e2001419 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article additives cathodes full cells sodium compensation sodium-ion batteries |
Zusammenfassung: | © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sodium-ion batteries have gained much attention for their potential application in large-scale stationary energy storage due to the low cost and abundant sodium sources in the earth. However, the electrochemical performance of sodium-ion full cells (SIFCs) suffers severely from the irreversible consumption of sodium ions of cathode during the solid electrolyte interphase (SEI) formation of hard carbon anode. Here, a high-efficiency cathode sodiation compensation reagent, sodium oxalate (Na2 C2 O4 ), which possesses both a high theoretical capacity of 400 mA h g-1 and a capacity utilization as high as 99%, is proposed. The implementation of Na2 C2 O4 as sacrificial sodium species is successfully realized by decreasing its oxidation potential from 4.41 to 3.97 V through tuning conductive additives with different physicochemical features, and the corresponding mechanism of oxidation potential manipulation is analyzed. Electrochemical results show that in the full cell based on a hard carbon anode and a P2-Na2/3 Ni1/3 Mn1/3 Ti1/3 O2 cathode with Na2 C2 O4 as a sodium reservoir to compensate for sodium loss during SEI formation, the capacity retention is increased from 63% to 85% after 200 cycles and the energy density is improved from 129.2 to 172.6 W h kg-1 . This work can provide a new avenue for accelerating the development of SIFCs |
---|---|
Beschreibung: | Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202001419 |