Effects of a Bt-based insecticide on the functional response of Ceraeochrysa cincta preying on Plutella xylostella

Plutella xylostella, is the main pest infesting Brassica crops, and products based on Bacillus thuringiensis (Bt) are frequently used in strategies for its biocontrol. The present study aimed to evaluate whether a Bt-based bioinsecticide affects the predation behavior of Ceraeochrysa cincta when pre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology (London, England). - 1992. - 29(2020), 7 vom: 02. Sept., Seite 856-865
1. Verfasser: de Oliveira Pimenta, Isabela Cristina (VerfasserIn)
Weitere Verfasser: da Silva Nunes, Gilmar, de Magalhães, Gustavo Oliveira, Dos Santos, Nathália Alves, Pinto, Matheus Moreira Dantas, De Bortoli, Sergio Antonio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Ecotoxicology (London, England)
Schlagworte:Journal Article Bacillus thuringiensis Chrysopids Diamondback moth Integrated pest management Trophic interactions Insecticides
Beschreibung
Zusammenfassung:Plutella xylostella, is the main pest infesting Brassica crops, and products based on Bacillus thuringiensis (Bt) are frequently used in strategies for its biocontrol. The present study aimed to evaluate whether a Bt-based bioinsecticide affects the predation behavior of Ceraeochrysa cincta when preying on P. xylostella. Three larval instars of the predator and the eggs and second-instar larvae of the moth were used, with the prey either untreated or treated with a Bt-based product (Xentari®). Results showed that, the first larval instar of C. cincta presented a type II functional response when preying upon untreated eggs, and a type III response when preying upon Bt-treated eggs, while the second and third instars presented type II and III responses, respectively, in both situations. The predator's first and third larval instars presented a type II functional response when preying upon untreated larvae and a type III response when preying upon Bt-treated larvae. However, the predator's second-instar larvae showed a type II response in both treatments. The results obtained allowed us to conclude that the Bt-based insecticide tested affects the predation behavior of the first-instar larvae of C. cincta on eggs and of both the first- and third-instar larvae of this predator on P. xylostella larvae
Beschreibung:Date Completed 04.09.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1573-3017
DOI:10.1007/s10646-020-02244-x