Spinel-Type MgMn2O4 Nanoplates with Vanadate Coating for a Positive Electrode of Magnesium Rechargeable Batteries
Spinel-type MgMn2O4 nanoplates ∼10 nm thick were prepared as a positive electrode for magnesium rechargeable batteries by the transformation of metal hydroxide nanoplates. Homogeneous coating with a vanadate layer thinner than 3 nm was achieved on the spinel oxide nanoplates via coverage of the prec...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 36(2020), 29 vom: 28. Juli, Seite 8537-8542 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Spinel-type MgMn2O4 nanoplates ∼10 nm thick were prepared as a positive electrode for magnesium rechargeable batteries by the transformation of metal hydroxide nanoplates. Homogeneous coating with a vanadate layer thinner than 3 nm was achieved on the spinel oxide nanoplates via coverage of the precursor and subsequent mild calcination. We found that the spinel oxide nanoplates with the homogeneous coating exhibit improved electrochemical properties, such as discharge potential, capacity, and cyclability, due to the enhanced insertion and extraction of magnesium ions and suppressed decomposition of electrolytes. The nanometric platy morphology of the spinel oxide and the vanadate coating act synergistically for the improvement of the electrochemical performance |
---|---|
Beschreibung: | Date Revised 14.08.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c01298 |