Strategy of landfilled waste reduction by a distributed materials recovery facility system in Surabaya, Indonesia

Slow progress in municipal waste reduction and landfill space scarcity lead to numerous environmental problems in Indonesia and developing countries. Surabaya, the role model of an environmental management city in Indonesia and other countries, is no exception. Despite the situation, Surabaya's...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 38(2020), 10 vom: 15. Okt., Seite 1142-1152
1. Verfasser: Muhamad, Afif Faiq (VerfasserIn)
Weitere Verfasser: Ishii, Kazuei, Sato, Masahiro, Ochiai, Satoru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Greenhouse gas emissions Surabaya landfilled waste materials recovery facility transportation efficiency waste flow
Beschreibung
Zusammenfassung:Slow progress in municipal waste reduction and landfill space scarcity lead to numerous environmental problems in Indonesia and developing countries. Surabaya, the role model of an environmental management city in Indonesia and other countries, is no exception. Despite the situation, Surabaya's initiative of deploying a distributed materials recovery facility (MRF) and its performance in recovering recyclables show a potential to be developed for addressing the landfill waste reduction issues. This study proposes a new strategy with small-sized distributed MRFs to achieve 30% landfilled waste reduction and reducing greenhouse gas (GHG) emissions, focusing on Surabaya as the case study. Scenario 1 merged three pairs of transfer stations which shows some indistinguishable optimizations and failed to meet the target. Both Scenario 2 and Scenario 3 added six years of landfill lifetime for reaching the target. However, the distributed MRF system and different transportation systems in Scenario 3 accomplished the goal with only 24 new MRFs, whereas Scenario 2 needs to upgrade 48 transfer stations into MRFs. Scenario 3 decreased the GHG emissions generation by 29%, possibly contributing to Indonesia's GHG emissions target of 0.2%
Beschreibung:Date Completed 13.10.2020
Date Revised 13.10.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X20932217