A Highly Crystalline Perylene Imide Polymer with the Robust Built-In Electric Field for Efficient Photocatalytic Water Oxidation
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 32 vom: 04. Aug., Seite e1907746 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article built-in electric field highly crystalline materials perylene imide polymers photocatalytic water oxidation |
Zusammenfassung: | © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. A highly crystalline perylene imide polymer (Urea-PDI) photocatalyst is successfully constructed. The Urea-PDI presents a wide spectrum response owing to its large conjugated system. The Urea-PDI performs so far highest oxygen evolution rate (3223.9 µmol g-1 h-1 ) without cocatalysts under visible light. The performance is over 107.5 times higher than that of the conventional PDI supramolecular photocatalysts. The strong oxidizing ability comes from the deep valence band (+1.52 eV) which is contributed by the covalent-bonded conjugated molecules. Besides, the high crystallinity and the large molecular dipoles of the Urea-PDI contribute to a robust built-in electric field promoting the separation and transportation of photogenerated carriers. Moreover, the Urea-PDI is very stable and has no performance attenuation after 100 h continuous irradiation. The Urea-PDI polymer photocatalyst provides with a new platform for the use of photocatalytic water oxidation, which is expected to contribute to clean energy production |
---|---|
Beschreibung: | Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201907746 |